Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Lab ; 69(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560868

RESUMO

BACKGROUND: There has been much research into the impact of shift systems on clinicians and nurses, but little research into quality control in clinical laboratories. This topic focuses on assessing the impact of shift systems on clinical laboratory scientists. METHODS: A total of 34,955 CBCs from pediatric patients who visited the hospital during night-time hours over a period of three years were selected for analysis. The quality of routine blood tests was evaluated using four indica-tors: red blood cell count, white blood cell count, platelet count, and hemoglobin levels. The effects of gender, years of experience, and length of the night shift on test results were evaluated separately for each clinical laboratory scientist. RESULTS: The results showed that the gender and years of experience of the clinical laboratory scientists did not affect the CBC results. However, a significant impact was observed as the number of hours worked on night shifts increased. CONCLUSIONS: The findings of this study suggest that the night shift schedule of clinical laboratory scientists can have an impact on the accuracy of pediatric CBCs. It is essential for healthcare institutions to consider the length of night shifts for clinical laboratory scientists and implement measures to minimize the impact on test results.


Assuntos
Serviços de Laboratório Clínico , Jornada de Trabalho em Turnos , Humanos , Criança , Laboratórios Clínicos , Contagem de Células Sanguíneas , Contagem de Plaquetas
2.
Stem Cell Res Ther ; 14(1): 145, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237420

RESUMO

BACKGROUND: Cosmc (C1GalT1C1) mutation could cause aberrant O-glycosylation and result in expression of Tn antigen on the surface of tumor cells (Tn+ cells), which is associated with the metastasis and prognosis of cancer progression. Mesenchymal stem cells (MSCs) could participate in immunoregulation, tissue damage repair, and tumor inhibition and be seen as an ideal candidate for tumor therapy due to their inherent capacity to migrate to tumor sites. However, their therapeutic effectiveness in different tumors is inconsistent and still controversial. Of note, emerging data reveal that side population (SP) cells have a stronger multilineage developmental potential than main population cells and can function as stem/progenitor cells. The effect of SP cells derived from MSCs on the biological behaviors and the O-glycosylation status of tumor cells remains unclear. METHODS: SP cells were isolated from human umbilical cord MSCs (hUCMSCs) and human placenta MSCs (hPMSCs). Tn+ cells (LS174T-Tn+ and HT-29-Tn+ cells) and matching Tn- cells (LS174T-Tn- and HT-29-Tn- cells) were isolated from human colorectal cancer cell (CRC) lines LS174T and HT-29 by immune magnetic beads. The proliferation, migration, apoptosis, Tn antigen expression, and O-glycome in Tn+ and Tn- CRC cells before and after co-cultured with SP-MSCs were detected using real-time cell Analysis (RTCA), flow cytometry (FCM), and cellular O-glycome reporter/amplification (CORA), respectively. Cosmc protein and O-glycosyltransferase (T-synthase and C3GnT) activity in CRC cells were, respectively, assessed using western blotting and fluorescence method. RESULTS: Both SP cells derived from hUCMSCs and hPMSCs could inhibit proliferation and migration, promote apoptosis of CRC cells, significantly reduce Tn antigen expression on Tn+ CRC cells, generate new core 1-, 2-, and 3-derived O-glycans, increase T-synthase and C3GnT activity, and elevate the levels of Cosmc and T-synthase protein. CONCLUSION: SP-hUCMSCs and SP-hPMSCs could inhibit proliferation and migration and promote apoptosis of Tn+ CRC cells via increasing O-glycosyltransferase activity to modify O-glycosylation status, which further adds a new dimension to the treatment of CRC.


Assuntos
Neoplasias Colorretais , Células da Side Population , Humanos , Glicosilação , Células da Side Population/patologia , Regulação Neoplásica da Expressão Gênica , Glicosiltransferases/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
3.
Aging (Albany NY) ; 13(19): 23393-23406, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644263

RESUMO

Cosmc mutations may cause abnormal O-glycosylation and result in Tn antigen expression. In the current study, it was discovered that proliferation and migration of Tn+ cells (Jurkat T and LS174T-Tn+ cells) with mutant Cosmc decreased after transfected Cosmc, and their sensitivity to apoptosis induced by Apo2L/TRAIL increased. Core 1-, 2-, and 3-derived O-glycans were absent in Tn+ cells. After Cosmc transfection, normal extended core 1-derived O-glycans appeared and were accompanied by increased T-synthase activity. Core 2-derived O-glycans appeared in transfected LS174T-Tn+ cells, and their structural types and levels were lower than those in LS174T-Tn- cells. Core 3-derived O-glycans were present only in LS174T-Tn- cells. The activity of C3GnT in LS174T-Tn+ cells was lower than that in LS174T-Tn- cells, and it was absent in Jurkat T cells. Cosmc transfection did not alter C3GnT activity or core 3-derived O-glycans in Jurkat T and LS174T-Tn+ cells. The results demonstrated that the composition and structure of O-glycans were different among various Tn+ cells, which not only affected cell malignant behavior but also modulated sensitivity to apoptotic stimuli. Thus, Cosmc transfection may effectively decrease the malignant behavior of Tn+ tumor cells and enhance their sensitivity to apoptosis when induced by Apo2L/TRAIL through modification of O-glycans.


Assuntos
Antígenos Glicosídicos Associados a Tumores/genética , Apoptose/genética , Chaperonas Moleculares/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transfecção/métodos , Antígenos Glicosídicos Associados a Tumores/metabolismo , Linhagem Celular Tumoral , Glicosilação , Humanos , Células Jurkat , Chaperonas Moleculares/metabolismo , Mutação/genética , Plasmídeos/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...