Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(9): 509, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101972

RESUMO

A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 µM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.

2.
RSC Adv ; 14(16): 10897-10904, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577432

RESUMO

The nanomaterials for non-enzymatic electrochemical sensors are usually pre-synthesized and coated onto electrodes by ex situ methods. In this work, amorphous cobalt-nickel sulfide (CoNiS) nanoparticles were facilely prepared on copper foam (CF) by the in situ successive ionic layer adsorption and reaction (SILAR) method, and as-prepared CoNiS/CF was studied as an electrode for non-enzymatic glucose sensing. It was analyzed by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). This binary sulfide electrode showed better performance toward glucose oxidation compared to the corresponding single sulfide and showed a wide linear range of 0.005 to 3.47 mM, a high sensitivity of 2298.7 µA mM-1 cm-2 and a low detection limit of 2.0 µM. The sensor exhibited high sensitivity and good repeatability and stability and was able to detect glucose in an actual sample. This work provides a simple and fast in situ electrode preparation method for a high-sensitivity glucose sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA