Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 115: 109685, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37278059

RESUMO

Chronic pain remains one of the world's most persistent and unsolved clinical challenges that severely affect patients' quality of life. Presently, considering that the mechanisms underlying chronic pain are not fully understood, there is a lack of effective drugs and interventions to treat chronic pain in clinical practice. Therefore, exploring the pathogenic mechanism of chronic pain and establishing potential targets are the keys to treating chronic pain. Substantial evidence has indicated that gut microbiota plays a crucial role in modulating chronic pain, which has opened up a new frontier for investigating the pathogenesis of chronic pain. The gut microbiota is a pivotal junction point between the neuroimmune-endocrine and the microbiome-gut-brain axes that could directly or indirectly affect chronic pain. Different signaling molecules (such as metabolites, neuromodulators, neuropeptides, and neurotransmitters) from the gut microbiota regulate the progress of chronic pain by modulating the peripheral and central sensitization by targeting the corresponding receptors. Furthermore, gut microbiota dysbiosis is associated with the progress of different chronic pain disorders, such as visceral pain, neuropathic pain, inflammatory pain, migraine, and fibromyalgia. Therefore, the present review attempted to systematically summarize the action of the gut microbiota toward regulating the pathological mechanisms of chronic pain and discussed the beneficial effects of probiotics supplementation or fecal microbiota transplantation (FMT) to restore the gut microbiota in chronic pain patients so as to provide a new strategy for targeting the gut microbiota for alleviating chronic pain issues.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Neuralgia , Probióticos , Humanos , Dor Crônica/terapia , Qualidade de Vida , Probióticos/uso terapêutico
2.
Biomedicines ; 11(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831001

RESUMO

Allocryptopine (ALL) is an isoquinoline alkaloid extracted from Macleaya cordata(Willd). R. Br., which has been claimed to have anti-inflammatory and neuroprotection properties. However, the mechanism by which ALL ameliorates inflammatory bowel disease (IBD) remains unclear. Here, we used network pharmacology and quantitative proteomic approaches to investigate the effect of ALL on IBD pathogenesis. Network pharmacology predicted potential targets and signaling pathways of ALL's anti-IBD effects. As predicted by network pharmacology, gene ontology (GO) analysis, in terms of the proteomic results, showed that the immune response in mucosa and antimicrobial humoral response were enriched. Further study revealed that the ALL-related pathways were the chemokine signaling pathway and apoptosis in the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we identified AKT1 as a hub for the critical pathways through protein-protein interaction (PPI) network analysis. Similar to mesalazine (MES), Western blot verified that ALL downregulated upstream chemokine CX3CL1 and GNB5 content to reduce phosphorylation of AKT and NF-κB, as well as the degree of apoptosis, to improve inflammatory response in the colon. Our research may shed light on the mechanism by which ALL inhibits the CX3CL1/GNB5/AKT2/NF-κB/apoptosis pathway and improves the intestinal barrier to reduce colitis response and act on the CX3CL1-CX3CR1 axis to achieve neuroprotection.

3.
Front Immunol ; 13: 885685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911694

RESUMO

Histone lysine crotonylation (KCR), a novel epigenetic modification, is important in regulating a broad spectrum of biological processes and various diseases. However, whether KCR is involved in neuropathic pain remains to be elucidated. We found KCR occurs in macrophages, sensory neurons, and satellite glial cells of trigeminal ganglia (TG), neurons, astrocytes, and microglia of the medulla oblongata. KCR in TG was detected mainly in small and medium sensory neurons, to a lesser extent in large neurons. Peripheral nerve injury elevated KCR levels in macrophages in the trigeminal and dorsal root ganglia and microglia in the medulla oblongata but reduced KCR levels in sensory neurons. Inhibition of histone crotonyltransferases (p300) by intra-TG or intrathecal administration of C646 significantly alleviated partial infraorbital nerve transection (pIONT)- or spinal nerve ligation (SNL)-induced mechanical allodynia and thermal hyperalgesia. Intra-TG or intrathecal administration of Crotonyl coenzyme A trilithium salt to upregulate KCR dose-dependently induced mechanical allodynia and thermal hyperalgesia in mice. Mechanismly, inhibition of p300 alleviated pIONT-induced macrophage activation and reduced the expression of pain-related inflammatory cytokines Tnfα, Il1ß and chemokines Ccl2 and Cxcl10. Correspondingly, exogenous crotonyl-CoA induced macrophage activation and the expression of Tnfα, Il1ß, Il6, Ccl2 and Ccl7 in TG, which C646 can repress. These findings suggest that histone crotonylation might be functionally involved in neuropathic pain and neuroinflammation regulation.


Assuntos
Hiperalgesia , Neuralgia , Animais , Histonas/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Lisina , Camundongos , Neuralgia/etiologia , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Adv Sci (Weinh) ; 9(27): e2201300, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35892263

RESUMO

Peripheral nerve injury-induced spinal microglial proliferation plays a pivotal role in neuropathic pain. So far, key intracellular druggable molecules involved in this process are not identified. The nuclear factor of activated T-cells (NFAT1) is a master regulator of immune cell proliferation. Whether and how NFAT1 modulates spinal microglial proliferation during neuropathic pain remain unknown. Here it is reported that NFAT1 is persistently upregulated in microglia after spinal nerve ligation (SNL), which is regulated by TET2-mediated DNA demethylation. Global or microglia-specific deletion of Nfat1 attenuates SNL-induced pain and decreases excitatory synaptic transmission of lamina II neurons. Furthermore, deletion of Nfat1 decreases microglial proliferation and the expression of multiple microglia-related genes, such as cytokines, transmembrane signaling receptors, and transcription factors. Particularly, SNL increases the binding of NFAT1 with the promoter of Itgam, Tnf, Il-1b, and c-Myc in the spinal cord. Microglia-specific overexpression of c-MYC induces pain hypersensitivity and microglial proliferation. Finally, inhibiting NFAT1 and c-MYC by intrathecal injection of inhibitor or siRNA alleviates SNL-induced neuropathic pain. Collectively, NFAT1 is a hub transcription factor that regulates microglial proliferation via c-MYC and guides the expression of the activated microglia genome. Thus, NFAT1 may be an effective target for treating neuropathic pain.


Assuntos
Microglia , Neuralgia , Proliferação de Células , Humanos , Microglia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
5.
Front Pharmacol ; 13: 845221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462923

RESUMO

Recent investigations have demonstrated that the chronic stress-induced behavioral disorders can be ameliorated by probiotics including Clostridium butyricum (C. butyricum) via the gut-brain-axis. However, the molecular mechanisms underlying the beneficial effects of C. butyricum on brain remain largely unknown. Here, we investigated whether chronic foot shock stress (CFSS) paradigm used for a hypertensive animal model could induce mood disorders such as anxiety, depression and cognitive impairments. Then, we assessed the impact of C. butyricum RH2 on the behavior disorders and neurobiological alterations in the hippocampus. Male Sprague-Dawley (SD) rats received intermittent electric shocks for consecutive 14 days and were treated with C. butyricum RH2 for 17 days. Anxiety- or depression-like behaviors were evaluated by open field test (OFT), and elevated plus maze (EPM). The Morris water maze test (MWM) was used to evaluate the cognitive functions. CFSS intervention led to mild anxiety- or depression-like behavior or cognitive impairment and C. butyricum RH2 treatment reversed the CFSS-induced symptoms. The serum ACTH or CORT was increased following CFSS but was completely reversed by C. butyricum RH2 treatment. In the hippocampus of CFSS rats, the expressions of BDNF and TrkB were downregulated but proBDNF and P75NTR were upregulated. These expression changes were partially reversed by C. butyricum RH2, suggesting a mode of action on BDNF and proBDNF balance. CFSS exposure resulted in downregulation of tissue-type plasminogen activator (tPA) but upregulation of plasminogen activator inhibitor 1(PAI-1), which could contribute to the decrease in BDNF by reduced conversion from proBDNF to BDNF in the hippocampus. C. butyricum RH2 treatment reversed the upregulated PAI-1 but not the downregulated tPA, which was in parallel with the amelioration of behavioral abnormalities, suggesting a novel tPA independent mechanism for PAI-1 action. Our results demonstrate for the first time that C. butyricum RH2 attenuates stress-induced behavior disorders via inhibiting the expression of brain PAI-1.

6.
J Pain Res ; 13: 3195-3206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293856

RESUMO

BACKGROUND: Currently, medical treatment of inflammatory pain is limited by a lack of safe and effective therapies. Triptonide (TPN), a major component of Tripterygium wilfordii Hook.f. with low toxicity, has been shown to have good anti-inflammatory and neuroprotective effects. The present study aims to investigate the effects of TPN on chronic inflammatory pain. MATERIALS AND METHODS: Inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). TPN's three different doses were intravenously administered to compare the analgesic efficacy: 0.1 mg/kg, 0.5 mg/kg, and 2.0 mg/kg. The foot swelling was quantitated by measuring paw volume. Mechanical allodynia and thermal hyperalgesia were assessed with von Frey filament testing and Hargreaves' test, respectively. Western blots, qRT-PCR and immunofluorescence tests were used to analyze the expression of pAKT, tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). Two AKT inhibitors, AKT inhibitor Ⅳ and MK-2206, were used to examine AKT's effects on pain behavior and cytokines expression. RESULTS: Intravenous treatment with TPN attenuated CFA-induced paw edema, mechanical allodynia, and thermal hyperalgesia. Western blotting and immunofluorescence results showed that CFA induced AKT activation in the dorsal root ganglion (DRG) neurons. However, these effects were suppressed by treatment with TPN. Furthermore, TPN treatment inhibited CFA-induced increase of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IL-6. Consistent with the in vivo data, TPN inhibited LPS-induced Akt phosphorylation and inflammatory mediator production in ND7/23 cells. Finally, intrathecal treatment with AKT inhibitor Ⅳ or MK-2206, attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, and simultaneously decreased the mRNA expression of TNF-α, IL-1ß, and IL-6 in DRG. CONCLUSION: These data indicate that TPN attenuates CFA-induced pain potentially via inhibiting AKT-mediated pro-inflammatory cytokines production in DRG. TPN may be used for the treatment of chronic inflammatory pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA