Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 27(4): 137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476892

RESUMO

Endothelial dysfunction caused by the stimulation of endothelial microparticles (EMPs) by the inflammatory factor IL-6 is one of the pathogenic pathways associated with Perthes disease. The natural active product biochanin A (BCA) has an anti-inflammatory effect; however, whether it can alleviate endothelial dysfunction in Perthes disease is not known. The present in vitro experiments on human umbilical vein endothelial cells showed that 0-100 pg/ml IL-6-EMPs could induce endothelial dysfunction in a concentration-dependent manner, and the results of the Cell Counting Kit 8 assay revealed that, at concentrations of <20 µM, BCA had no cytotoxic effect. Reverse transcription-quantitative PCR demonstrated that BCA reduced the expression levels of the endothelial dysfunction indexes E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) in a concentration-dependent manner. Immunofluorescence and western blotting illustrated that BCA increased the expression levels of zonula occludens-1 and decreased those of ICAM-1. Mechanistic studies showed that BCA inhibited activation of the NFκB pathway. In vivo experiments demonstrated that IL-6 was significantly increased in the rat model of ischemic necrosis of the femoral head, whereas BCA inhibited IL-6 production. Therefore, in Perthes disease, BCA may inhibit the NFκB pathway to suppress IL-6-EMP-induced endothelial dysfunction, and could thus be regarded as a potential treatment for Perthes disease.

2.
PLoS One ; 19(3): e0299298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547075

RESUMO

We here describe the external morphology and complete mitochondrial genome characteristics of Mecidea indica Dallas, 1851, and clarify the evolutionary rate and divergence time. The M. indica mitochondrial genome length is 15,670 bp, and it exhibits a typical high A+T-skew (76.31%). The sequence shows strong synteny with the original gene arrangement of Drosophila yakuba Burla, 1954 without rearrangement. The M. indica mitochondrial genome characteristics were analyzed, and phylogenetic trees of Pentatomidae were reconstructed using Bayesian methods based on different datasets of the mitochondrial genome datasets. Phylogenetic analysis shows that M. indica belongs to Pentaotominae and form a sister-group with Anaxilaus musgravei Gross, 1976, and Asopinae is highly supported as monophyletic. Molecular clock analysis estimates a divergence time of Pentatomidae of 122.75 Mya (95% HPD: 98.76-145.43 Mya), within the Mesozoic Cretaceous; the divergence time of M. indica and A. musgravii was no later than 50.50 Mya (95% HPD: 37.20-64.80 Mya). In addition, the divergence time of Asopinae was 62.32 Mya (95% HPD: 47.08-78.23 Mya), which was in the Paleogene of the Cenozoic era. This study is of great significance for reconstructing the phylogeny of Pentatomidae and providing insights into its evolutionary history.


Assuntos
Genoma Mitocondrial , Heterópteros , Animais , Filogenia , Teorema de Bayes , Heterópteros/genética , Evolução Biológica
3.
BMC Complement Med Ther ; 24(1): 26, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195507

RESUMO

BACKGROUND: Legg-Calvé-Perthes disease is a special self-limited disease in pediatric orthopedics with a high disability rate and a long-term course, and there is still no clear and effective therapeutic drug in clinic. This study aimed to investigate the potential efficacy of biochanin A, a kind of oxygen-methylated isoflavone compound, in treating Perthes disease based on network pharmacology, molecular docking and in vitro experiments. METHODS: IL-6 was used to stimulate human umbilical vein endothelial cells to construct endothelial cell dysfunction model. We demonstrated whether biochanin A could alleviate endothelial dysfunction through CCK8 assay, immunofluorescence. Targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. Targets of endothelial dysfunction were obtained from Genecards and OMIM databases. Protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomics analyses were used to analyze the potential target and the key pathway of the anti-endothelial dysfunction activity of biochanin A. To validate the potential target-drug interactions, molecular docking and molecular dynamics simulations were performed and the result was proved by western blot. RESULTS: It was found that biochanin A can promote the expression of ZO-1, reduce the expression of ICAM-1, which means improving endothelial dysfunction. A total of 585 targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. A total of 10,832 targets of endothelial dysfunction were obtained from Genecards and OMIM databases. A total of 527 overlapping targets of endothelial dysfunction and biochanin A were obtained. AKT1, TNF-α, VCAM1, ICAM1, and NOS3 might be the key targets of the anti-endothelial dysfunction activity of biochanin A, and the key pathways might be PI3K-Akt and TNF signaling pathways. Molecular docking results indicated that the AKT1 and TNF-α had the highest affinity binding with biochanin A. CONCLUSION: This study indicates that biochanin A can target AKT1 and TNF-α to alleviate endothelial dysfunction induced by IL-6 in Perthes disease, which provides a theoretical basis for the treatment of Perthes disease by using biochanin A.


Assuntos
Doença de Legg-Calve-Perthes , Fator de Necrose Tumoral alfa , Criança , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Células Endoteliais , Interleucina-6 , Fosfatidilinositol 3-Quinases
4.
Oncol Lett ; 27(2): 83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38249815

RESUMO

Heparanase (HPSE), an endo-ß-D-glucuronidase, cleaves heparan sulfate and serves an important role in the tumor microenvironment and thus in tumorigenesis. HPSE is known to promote tumor cell evasion of apoptosis. However, the underlying mechanism of this requires further study. In the present study, the results demonstrated that myeloid cell leukemia-1 (MCL-1), an antiapoptotic protein, and HPSE were upregulated in prostate cancer tissues compared with adjacent normal tissues. In addition, the HPSE inhibitor, OGT 2115, inhibited PC-3 and DU-145 prostate cancer cell viability in a dose-dependent manner, with IC50 values of 20.2 and 97.2 µM, respectively. Furthermore, annexin V/PI double-staining assays demonstrated that OGT 2115 induced apoptosis in prostate cancer cells. OGT 2115 treatment markedly decreased MCL-1 protein expression levels, whereas RNA interference-mediated downregulation of MCL-1 and OGT 2115 drug treatment synergistically induced apoptosis in PC-3 and DU-145 cells. In vivo, OGT 2115 40 mg/kg (ig) significantly inhibited PC-3 cell xenograft growth in nude mice and increased the positive TUNEL staining rate of xenograft tissues. It was therefore hypothesized that MCL-1 was an important signaling molecule in OGT 2115-induced apoptosis. The results of the present study also demonstrated that the proteasome inhibitor, MG-132, markedly inhibited the downregulation of MCL-1 protein expression levels induced by OGT 2115. However, the protein synthesis inhibitor, cycloheximide, did not affect the role of OGT 2115 in regulating MCL-1. In summary, the results of the present study demonstrated that the proapoptotic activity of OGT 2115 was achieved by downregulating MCL-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA