Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(34): 22423-22432, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140357

RESUMO

We present a highly efficient approach to directly and reliably simulate photodissociation followed by Coulomb explosion of methyl iodide. In order to achieve statistical reliability, more than 40 000 trajectories are calculated on accurate potential energy surfaces of both the neutral molecule and the doubly charged cation. Non-adiabatic effects during photodissociation are treated using a Landau-Zener surface hopping algorithm. The simulation is performed analogous to a recent pump-probe experiment using coincident ion momentum imaging [Ziaee et al., Phys. Chem. Chem. Phys., 2023, 25, 9999-10010]. At large pump-probe delays, the simulated delay-dependent kinetic energy release signals show overall good agreement with the experiment, with two major dissociation channels leading to I(2P3/2) and I*(2P1/2) products. At short pump-probe delays, the simulated kinetic energy release differs significantly from the values obtained by a purely Coulombic approximation or a one-dimensional description of the dicationic potential energy surfaces, and shows a clear bifurcation near 12 fs, owing to non-adiabatic transitions through a conical intersection. The proposed approach is particularly suitable and efficient in simulating processes that highly rely on statistics or for identifying rare reaction channels.

2.
Phys Chem Chem Phys ; 22(44): 25669-25674, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164001

RESUMO

Entanglement is at the core of quantum information processing and may prove essential for quantum speed-up. Inspired by both theoretical and experimental studies of spin-momentum coupling in systems of ultra-cold atoms, we investigate the entanglement between the spin and momentum degrees of freedom of an optically trapped BEC of 87Rb atoms. We consider entanglement that arises due to the coupling of these degrees of freedom induced by Raman and radio-frequency fields and examine its dependence on the coupling parameters by evaluating von Neumann entropy as well as concurrence as measures of the entanglement attained. Our calculations reveal that under proper experimental conditions significant spin-momentum entanglement can be obtained, with von Neumann entropy of 80% of the maximum attainable value. Our analysis sheds some light on the prospects of using BECs for quantum information applications.

3.
Chemphyschem ; 17(22): 3756-3763, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27509888

RESUMO

The present study is inspired by the Wieman group experiment [Phys. Rev. Lett. 2005, 95, 190404], in which they use a slow modulated magnetic field to effectively transfer rubidium atoms into cold molecules near a Feshbach resonance. We develop a time-dependent collision theory based on two channel model potentials to study the atom-molecule population transfer induced by a single-color radio frequency field in an ultracold 87 Rb gas. Wave-packet dynamical simulations allow an investigation of both bound-bound transitions and free-bound transitions. The effects of temperature, detuning and the RF amplitude on the population transfer are discussed in detail. Some of our simulations suggest that oscillatory atom-molecule conversion could originate from the long coherence time of the wave packet. This coherence time is unusually long in ultracold gases because the collision energy is typically quite well-defined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA