Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874844

RESUMO

PURPOSE: To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS: 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS: The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION: Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.

2.
Environ Res ; 212(Pt B): 113290, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35427593

RESUMO

Phthalic acid esters (PAEs) pollution has become a major environmental problem in agricultural waste composting. However, little information was available about the how the PAEs alter microbial processes during composting. This study investigated the effects of di-n-butyl phthalate (DBP) on bacterial biomass and community dynamics during composting. The results showed that a decreasing of DBP was observed from thermophilic phase and 43.26% of DBP was degraded after composting. The bacterial biomass and diversity during composting were reduced under DBP stress, so delaying the decomposition of organic matter. Moreover, the changes in bacterial community were observed since the thermophilic phase of DBP-contaminated composting. KEGG pathway analysis indicated that DBP stress decreased the relative abundance of the main metabolic pathways and inhibited compost maturation. Moreover, DBP stress had more significant correlation with the dominant bacteria. This work will expand the understanding of PAEs-contaminated organic waste composting and further control of PAEs pollutants.


Assuntos
Compostagem , Ácidos Ftálicos , Agricultura , Bactérias/metabolismo , Biomassa , Dibutilftalato , Ésteres/metabolismo , Ácidos Ftálicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA