Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(9): e202300006, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565513

RESUMO

This study investigated the impact of ultrasonic extraction (UE) on the structure and in vitro antibacterial activity of polysaccharides from sugarcane leaves (SLW). Native sugarcane leaf polysaccharides were treated with ultrasound (480 W) for 3 h to yield sugarcane leaf polysaccharides (SLU). Compared to SLW (33.59 kDa), the molecular weight of SLU (13.08 kDa) was significantly decreased, while the monosaccharide composition of SLU was unchanged. The results of SEM and XRD indicated that UE significantly changed the surface morphology of SLW and destroyed its inner crystalline structure. In vitro experiments showed that SLU had stronger antibacterial activity. These findings revealed that UE treatment could alter the tertiary structure of SLW but had no impact on its primary structure. Furthermore, the antibacterial activity of SLW could be greatly enhanced after UE treatment. As a bioactive additive, SLU has great application potential in functional foods, cosmetics, and pharmaceuticals.


Assuntos
Saccharum , Ultrassom , Polissacarídeos/farmacologia , Polissacarídeos/química , Antioxidantes/química , Folhas de Planta , Antibacterianos/farmacologia , Ondas Ultrassônicas
2.
J Mol Model ; 19(3): 1089-98, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23138643

RESUMO

N6-methyladenine (m(6)A) is a rare base naturally occurring in DNA. It is different from the base adenine due to its N-CH(3). Therefore, the base not only pairs with thymine, but also with other DNA bases (cytosine, adenine and guanine). In this work, Møller-Plesset second-order (MP2) method has been used to investigate the binding mechanism between m(6)A and natural DNA bases in gas phase and in aqueous solution. The results show that N-CH(3) changed the way of N6-methyladenine binding to natural DNA bases. The binding style significantly influences the stability of base pairs. The trans-m(6)A:G and trans-m(6)A:C conformers are the most stable among all the base pairs. The existence of solvent can remarkably reduce the stability of the base pairs, and the DNA bases prefer pairing with trans-m(6)A to cis-m(6)A. Besides, the properties of these hydrogen bonds have been analyzed by atom in molecules (AIM) theory, natural bond orbital (NBO) analysis and Wiberg bond indexes (WBI). In addition, pairing with m(6)A decreases the binding energies compared to the normal Watson-Crick base pairs, it may explain the instability of the N6 site methylated DNA in theory.


Assuntos
Adenina/análogos & derivados , Pareamento de Bases , Citosina/metabolismo , Guanina/metabolismo , Adenina/química , Adenina/metabolismo , Citosina/química , DNA/química , Guanina/química , Ligação de Hidrogênio , Modelos Moleculares , Termodinâmica
3.
Carbohydr Polym ; 90(2): 792-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22840003

RESUMO

Efficient catalytic conversion of microcrystalline cellulose (MCC) to 5-hydroxymethyl furfural (HMF), is achieved using acidic ionic liquids (ILs) as the catalysts and metal salts as co-catalysts in the solvent of 1-ethyl-3-methylimidazo-lium acetate ([emim][Ac]). A series of acidic ILs has been synthesized and tested in conversion of MCC to HMF. The effect of reaction conditions, such as reaction time, temperature, catalyst dosage, metal salts, water dosage, Cu(2+) concentration and various acidic ILs are investigated in detail. The results show that CuCl(2) in 1-(4-sulfonic acid) butyl-3-methylimidazolium methyl sulfate ([C(4)SO(3)Hmim][CH(3)SO(3)]), is found to be an efficient catalyst for catalytic conversion of MCC to HMF, and 69.7% yield of HMF is obtained. A mechanism to explain the high activity of CuCl(2) in [C(4)SO(3)Hmim][CH(3)SO(3)] is proposed. To the best of our knowledge, this report first proposes that the Cu(2+) and [C(4)SO(3)Hmim][CH(3)SO(3)] show better catalytic performance in catalytic conversion of MCC to HMF.


Assuntos
Ácidos/farmacologia , Celulose/metabolismo , Furaldeído/análogos & derivados , Líquidos Iônicos/farmacologia , Catálise , Celulose/química , Estabilidade de Medicamentos , Eficiência , Furaldeído/química , Furaldeído/farmacocinética , Modelos Biológicos , Concentração Osmolar , Solventes/farmacologia , Temperatura , Fatores de Tempo
4.
Carbohydr Polym ; 89(1): 7-16, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24750596

RESUMO

Density functional theory calculations and atoms in molecules theory were performed to investigate the mechanism of cellulose dissolution and regeneration in 1-ethyl-3-methylimidazolium acetate ([emim]Ac), and (1,4)-dimethoxy-ß-D-glucose (Glc) was chosen as the model for cellulose. The theoretical results show that the interaction of [emim]Ac with Glc is stronger than that of Glc with Glc. Further studies indicate that the anion acetate of [emim]Ac forms strong H-bonds with hydroxyl groups of Glc. It is also observed that the H-bonds between [emim]Ac and Glc are weakened or even destroyed by the addition of water. In addition, both the original and regenerated cellulose samples were characterized with FT-IR, XRD, TGA and SEM. The experimental results prove that cellulose can be readily reconstituted from the [emim]Ac-based cellulose solution by the addition of water and the crystalline structure of cellulose is converted to cellulose II from cellulose I in the original cellulose.


Assuntos
Celulose/química , Imidazóis/química , Líquidos Iônicos/química , Glucose/análogos & derivados , Glucose/química , Microscopia Eletrônica de Varredura , Reciclagem , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA