Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 250, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203187

RESUMO

BACKGROUND: Immunosurveillance of the central nervous system (CNS) is vital to resolve infection and injury. However, immune activation within the CNS in the setting of chronic viral infections, such as HIV-1, is strongly linked to progressive neurodegeneration and cognitive decline. Establishment of HIV-1 in the CNS early following infection underscores the need to delineate features of acute CNS immune activation, as these early inflammatory events may mediate neurodegenerative processes. Here, we focused on elucidating molecular programs of neuroinflammation in brain regions based on vulnerability to neuroAIDS and/or neurocognitive decline. To this end, we assessed transcriptional profiles within the subcortical white matter of the pre-frontal cortex (PFCw), as well as synapse dense regions from hippocampus, superior temporal cortex, and caudate nucleus, in rhesus macaques following infection with Simian/Human Immunodeficiency Virus (SHIV.C.CH505). METHODS: We performed RNA extraction and sequenced RNA isolated from 3 mm brain punches. Viral RNA was quantified in the brain and cerebrospinal fluid by RT-qPCR assays targeting SIV Gag. Neuroinflammation was assessed by flow cytometry and multiplex ELISA assays. RESULTS: RNA sequencing and flow cytometry data demonstrated immune surveillance of the rhesus CNS by innate and adaptive immune cells during homeostasis. Following SHIV infection, viral entry and integration within multiple brain regions demonstrated vulnerabilities of key cognitive and motor function brain regions to HIV-1 during the acute phase of infection. SHIV-induced transcriptional alterations were concentrated to the PFCw and STS with upregulation of gene expression pathways controlling innate and T-cell inflammatory responses. Within the PFCw, gene modules regulating microglial activation and T cell differentiation were induced at 28 days post-SHIV infection, with evidence for stimulation of immune effector programs characteristic of neuroinflammation. Furthermore, enrichment of pathways regulating mitochondrial respiratory capacity, synapse assembly, and oxidative and endoplasmic reticulum stress were observed. These acute neuroinflammatory features were substantiated by increased influx of activated T cells into the CNS. CONCLUSIONS: Our data show pervasive immune surveillance of the rhesus CNS at homeostasis and reveal perturbations of important immune, neuronal, and synaptic pathways within key anatomic regions controlling cognition and motor function during acute HIV infection. These findings provide a valuable framework to understand early molecular features of HIV associated neurodegeneration.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Substância Branca , Animais , Lobo Frontal , HIV-1/genética , Humanos , Macaca mulatta/genética , RNA Viral , Carga Viral
2.
Cell Rep ; 41(5): 111573, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288725

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), can induce a plethora of neurological complications in some patients. However, it is still under debate whether SARS-CoV-2 directly infects the brain or whether CNS sequelae result from systemic inflammatory responses triggered in the periphery. By using high-resolution microscopy, we investigated whether SARS-CoV-2 reaches the brain and how viral neurotropism can be modulated by aging in a non-human primate model of COVID-19. Seven days after infection, SARS-CoV-2 was detected in the olfactory cortex and interconnected regions and was accompanied by robust neuroinflammation and neuronal damage exacerbated in aged, diabetic animals. Our study provides an initial framework for identifying the molecular and cellular mechanisms underlying SARS-CoV-2 neurological complications, which will be essential to reducing both the short- and long-term burden of COVID-19.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Animais , SARS-CoV-2 , Doenças Neuroinflamatórias , Neurônios , Primatas
3.
FASEB Bioadv ; 3(9): 744-767, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485842

RESUMO

The primary cilium is a plasma membrane-protruding sensory organelle that efficiently conveys signaling cascades in a highly ordered microenvironment. Its signaling is mediated, in part, by a limited set of GPCRs preferentially enriched in the cilium membrane. This includes melanin-concentrating hormone (MCH) receptor 1 (MCHR1), which plays a role in feeding and mood. In addition to its receptor composition, the length of the cilium is a characteristic parameter that is implicated in its function. We previously found that MCH can dynamically shorten cilia length via the Gi/o and Akt pathways in both MCHR1-expressing hTERT-RPE1 cells (hRPE1 cells) and rat hippocampal neurons. However, the detailed mechanisms by which MCH regulates cilia length through ciliary MCHR1 remains unclear. In this study, we aimed to determine the transcriptome changes in MCHR1-expressing hRPE1 cells in response to MCH to identify the target molecules involved in cilia length regulation via MCHR1 activation. RNA sequencing analysis of ciliated cells subjected to MCH treatment showed upregulation of 424 genes and downregulation of 112 genes compared with static control cells. Validation by quantitative real-time PCR, knocking down, and CRISPR/Cas9-mediated knockout technology identified a molecule, PDZ and LIM domain-containing protein 5 (PDLIM5). Thus, it was considered as the most significant key factor for MCHR1-mediated shortening of cilia length. Additional analyses revealed that the actin-binding protein alpha-actinin 1/4 is a crucial downstream target of the PDLIM5 signaling pathway that exerts an effect on MCHR1-induced cilia shortening. In the endogenous MCHR1-expressing hippocampus, transcriptional upregulation of PDLIM5 and actinin 1/4, following the application of MCH, was detected when the MCHR1-positive cilia were shortened. Together, our transcriptome study based on ciliary MCHR1 function uncovered a novel and important regulatory step underlying cilia length control. These results will potentially serve as a basis for understanding the mechanism underlying the development of obesity and mood disorders.

5.
Neurochem Int ; 142: 104902, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197527

RESUMO

The primary cilium is a solitary organelle that organizes a sensitive signaling hub in a highly ordered microenvironment. Cilia are plastic structures, changing their length in response to bioactive substances, and ciliary length may be regulated to ensure efficient signaling capacity. Mammalian brain neurons possess primary cilia that are enriched in a set of G protein-coupled receptors (GPCRs), including the feeding-related melanin-concentrating hormone (MCH) receptor 1 (MCHR1). We previously demonstrated a novel biological phenomenon, ciliary MCHR1-mediated cilia length shortening through Gi/o and Akt signaling, using a simple cell culture model of human retinal pigmented epithelial RPE1 cells exogenously expressing MCHR1. In the present study, we characterized the properties of endogenous MCHR1-expressing primary cilia in hippocampal neurons in rodents. Using cultured dissociated rat hippocampal neurons in vitro, we showed that MCH triggered cilia length reduction involved in MCHR1-Gi/o and -Akt signaling. In rat hippocampal slice cultures with preservation of the cytoarchitecture and cell populations, ciliary MCHR1 was abundantly located in the CA1 and CA3 regions, but not in the dentate gyrus. Notably, treatment of slice cultures with MCH induced Gi/o- and Akt-dependent cilia shortening in the CA1 region without influencing cilia length in the CA3 region. Regarding the in vivo mouse brain, we observed higher levels of ciliary MCHR1 in the CA1 and CA3 regions as well as in slice cultures. In the starved state mice, a marked increase in MCH mRNA expression was detected in the lateral hypothalamus. Furthermore, MCHR1-positive cilia length in the hippocampal CA1 region was significantly shortened in fasted mice compared with fed mice. The present findings focused on the hippocampus provide a potential approach to investigate how MCHR1-driven cilia shortening regulates neuronal activity and physiological function toward feeding and memory tasks.


Assuntos
Cílios/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Células Cultivadas , Cílios/química , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptores de Somatostatina/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-32849267

RESUMO

Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.


Assuntos
Lactação , Glândulas Mamárias Animais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Hormônio Hipofisário/genética , Receptores do Hormônio Hipofisário/metabolismo , Animais , Feminino , Imuno-Histoquímica , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Ratos , Ratos Long-Evans
7.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530066

RESUMO

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Receptores de Somatostatina/biossíntese , Caracteres Sexuais , Animais , Cílios/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de Somatostatina/genética
8.
Front Neurosci ; 13: 1280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849590

RESUMO

The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism's homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.

9.
J Undergrad Neurosci Educ ; 17(2): A153-A158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360131

RESUMO

Visual impairment is the most common form of disability in the world and results in major challenges to the education and employment of affected individuals. It is important, therefore, to provide the best possible higher education for these individuals, not only providing the same access to theoretical contents but also training them for their future work environment. The reliance of neuroanatomy teaching on visual material creates a set of challenges for educators, a situation that is only worsened by the lack of specific neuroanatomy teaching tools for students with visual impairment. To overcome this problem, a set of tactile tools for neuroanatomy education was prepared using low-cost materials such as hot-melt adhesive, pins and easily found fabrics. These tools were then employed in an undergraduate class of physical therapy, speech therapy and occupational therapy students that included a student with visual impairment. The use of tactile tools allowed full integration of the student, who was able to participate in hands-on classes with her peers. We anticipate that the ease of fabrication and the low cost may allow this experience to be replicated in the instruction of neuroanatomy in undergraduate neuroscience programs at other institutions.

10.
J Comp Neurol ; 527(18): 2973-3001, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31152440

RESUMO

Melanin-concentrating hormone (MCH) is a conserved neuropeptide, predominantly located in the diencephalon of vertebrates, and associated with a wide range of functions. While functional studies have focused on the use of the traditional mouse laboratory model, critical gaps exist in our understanding of the morphology of the MCH system in this species. Even less is known about the nontraditional animal model Neotomodon alstoni (Mexican volcano mouse). A comparative morphological study among these rodents may, therefore, contribute to a better understanding of the evolution of the MCH peptidergic system. To this end, we employed diverse immunohistochemical protocols to identify key aspects of the MCH system, including its spatial relationship to another neurochemical population of the tuberal hypothalamus, the orexins. Three-dimensional (3D) reconstructions were also employed to convey a better sense of spatial distribution to these neurons. Our results show that the distribution of MCH neurons in all rodents studied follows a basic plan, but individual characteristics are found for each species, such as the preeminence of a periventricular group only in the rat, the lack of posterior groups in the mouse, and the extensive presence of MCH neurons in the anterior hypothalamic area of Neotomodon. Taken together, these data suggest a strong anatomical substrate for previously described functions of the MCH system, and that particular neurochemical and morphological features may have been determinant to species-specific phenotypes in rodent evolution.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Melaninas/metabolismo , Melanóforos/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Feminino , Hormônios Hipotalâmicos/análise , Hipotálamo/química , Masculino , Melaninas/análise , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Hormônios Hipofisários/análise , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
11.
Front Neurosci ; 13: 425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130838

RESUMO

The teneurins are a family of glycosylated type II transmembrane proteins synthesized in several tissue from both vertebrate and invertebrate species. These proteins interact with the latrophilins, a group of adhesion G protein-coupled receptors. Both teneurins and latrophilins may have been acquired by choanoflagellates through horizontal gene transfer from a toxin-target system present in prokaryotes. Teneurins are highly conserved in eukaryotes, with four paralogs (TEN1, TEN2, TEN3, and TEN4) in most vertebrates playing a role in the normal neural development, axonal guiding, synapse formation and synaptic maintenance. In this review, we summarize the main findings concerning the distribution and morphology of the teneurins and latrophilins, both during development and in adult animals. We also briefly discuss the current knowledge in the distribution of the teneurin C-terminal associated protein (TCAP), a peptidergic sequence at the terminal portion of teneurins that may be independently processed and secreted. Through the analysis of anatomical data, we draw parallels to the evolution of those proteins and the increasing complexity of this system, which mirrors the increase in metazoan sensory complexity. This review underscores the need for further studies investigating the distribution of teneurins and latrophilins and the use of different animal models.

12.
J Neuroendocrinol ; 31(9): e12723, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034718

RESUMO

Although the melanin-concentrating hormone (MCH) and its coding mRNA are predominantly found in the tuberal hypothalamus, there is detectable synthesis of MCH in the preoptic hypothalamus exclusively in lactating dams, suggesting a participation of MCH in the alterations that take place after parturition. Also implicated in the dam physiology is oxytocin, a neurohormone released from the posterior pituitary that is necessary for milk ejection. Because the projection fields from oxytocin-immunoreactive (-IR) neurones and the mediobasal preoptic hypothalamus overlap and MCH-IR neurones are found in proximity to oxytocin neurones, we investigated the spatial relationship between MCH and oxytocin fibres. Accordingly, we employed multiple immunohistochemistry labelling for MCH and oxytocin for light and electron microscopy techniques, in addition to i.v. tracer injection combined with in situ hybridisation to identify MCH neurones that project to neurosecretory areas. As described for other strains, lactating Long-Evans dams also display immunoreactivity for MCH in the preoptic hypothalamus on days 12 and 19 of lactation. The appearance of these neurones is contemporaneous with an increase in MCH-IR fibres in both the internal layer of the median eminence and the posterior pituitary. In both regions, MCH- and oxytocin-IR fibres were found in great proximity, although there was no evidence for synaptic interaction between these two populations at the ultrastructural level. The tracer injection revealed that only mediobasal preoptic MCH neurones project to the posterior pituitary, suggesting a neuroendocrine-modulatory role for this population. When taken together, the results obtained in the present study indicate that neuroplasticity events at the mediobasal preoptic hypothalamus that occur during late lactation may be part of a neuroendocrinology control loop involving both MCH and oxytocin.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Eminência Mediana/citologia , Eminência Mediana/metabolismo , Melaninas/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Feminino , Lactação/metabolismo , Ocitocina/metabolismo , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos Long-Evans
13.
Brain Struct Funct ; 223(8): 3739-3755, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30054744

RESUMO

The orexin-immunoreactive neurons are part of an important arousal-promoting hypothalamic population. Several groups have investigated these neurons during the lactation period, when numerous physiological alterations occur in the dam's body to cope with the newly acquired metabolic needs of the litter. Although those studies have probed this population during the early and intermediate stages of lactation, few works have examined its response to weaning, including the cessation of the tactile suckling stimulus as the litter stops nursing. Using double immunohistochemistry for orexin and FOS combined with three-dimensional reconstruction techniques, we investigated orexin-synthesizing neurons and their activation at different times during weaning, in addition to the role played by the suckling stimulus. We report here that weaning promoted a decline in the anterior population of orexin-immunoreactive neurons and decreased the number of double orexin-FOS neurons labeled in the central dorsomedial hypothalamus, in addition to reducing the overall number of FOS-immunoreactive cells in the whole tuberal hypothalamus. Disruption of the suckling stimulus from the pups impaired the decrease in the number of anteriorly located orexin-immunoreactive neurons, attenuated the activation of orexin-synthesizing cells in the dorsomedial hypothalamus and reduced the number of FOS-immunoreactive neurons across the tuberal hypothalamus. When taken together, our data suggest that the weaning period is necessary to restore neurochemical pathways altered during the lactation period and that the suckling stimulus plays a significant role in this process.


Assuntos
Hipotálamo/crescimento & desenvolvimento , Lactação , Neurônios/metabolismo , Orexinas/metabolismo , Desmame , Animais , Animais Lactentes , Contagem de Células , Feminino , Hipotálamo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar
14.
Front Neuroanat ; 11: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790894

RESUMO

Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates.

15.
Front Syst Neurosci ; 11: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611599

RESUMO

The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.

16.
J Chem Neuroanat ; 68: 22-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206178

RESUMO

The oculomotor accessory nucleus, often referred to as the Edinger-Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW-EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW-EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW-LHA and EW-CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the hypothalamus and the posterior hypothalamus. Our findings provide anatomical bases for previously unrecognized roles of the EW in the modulation of several physiologic systems.


Assuntos
Núcleo de Edinger-Westphal/anatomia & histologia , Núcleo de Edinger-Westphal/fisiologia , Vias Eferentes/anatomia & histologia , Vias Eferentes/fisiologia , Vias Aferentes/anatomia & histologia , Vias Aferentes/fisiologia , Animais , Masculino , Neurônios , Neurônios Eferentes/classificação , Neurônios Eferentes/fisiologia , Ratos , Ratos Long-Evans , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...