Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Oceans ; 127(10): e2022JC018999, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36590600

RESUMO

Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water-column DFe distributions has not been previously documented. We collected hydrographic data and water-column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April-May 2017 (late austral fall). In the Terra Nova Bay polynya, we observed intense katabatic wind events, and surface mixed layer depths varied from ∼250 to ∼600 m over lateral distances <10 km; there vertical mixing was just starting to excavate the dense, iron-rich Shelf Waters, and there was also evidence of DFe inputs at shallower depths in the water column. In the Ross Ice Shelf polynya, wind speeds were lower, mixed layers were <300 m deep, and DFe distributions were similar to previous, late-summer observations, with concentrations elevated near the seafloor. Corresponding measurements of dissolved manganese and zinc, and particulate iron, manganese, and aluminum, suggest that deep DFe maxima and some mid-depth DFe maxima primarily reflect sedimentary inputs, rather than remineralization. Our data and model simulations imply that vertical resupply of DFe in the Ross Sea occurs mainly during mid-late winter, and may be particularly sensitive to changes in the timing and extent of sea ice production.

2.
J Geophys Res Oceans ; 124(3): 1544-1565, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865970

RESUMO

The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast-melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean-ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010-2011. The simulated biogeochemical cycle is strongly controlled by light availability(dictated by sea ice, phytoplankton self-shading, and variable sunlight). The micronutrient iron exhibits strong seasonality, where scavenging by biogenic particles and remineralization play large compensating roles. Lateral fluxes of iron are also important to the iron budget, and our results confirm the key role played by inputs of dissolved iron from the buoyancy-driven circulation of melting ice shelf cavities (the "meltwater pump"). The model suggests that westward flowing coastal circulation plays two important roles: it provides additional iron to the ASP and it collects particulate organic matter generated by the bloom and transports it to the west of the ASP. As a result, maps of vertical particulate organic matter fluxes show highest fluxes in shelf regions located west of the productive central ASP. Overall, these model results improve our mechanistic understanding of the ASP bloom, while suggesting testable hypotheses for future field efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...