Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(1): e0013023, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099679

RESUMO

Twelve Bifidobacterium strains were isolated from fecal samples of inflammatory bowel disease patients and matched "household control" individuals. These include the species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum.

2.
Bioinformatics ; 39(10)2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738590

RESUMO

MOTIVATION: Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of challenges in viral assembly, fragmentation of genomes can occur, and existing tools may recover incomplete genome fragments. Therefore, the identification and characterization of novel phage genomes remain a challenge, leading to the need of improved approaches for phage genome recovery. RESULTS: We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. AVAILABILITY AND IMPLEMENTATION: Phables is available on GitHub at https://github.com/Vini2/phables.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Genoma Viral , Genômica , Metagenoma , Metagenômica/métodos , Bactérias/genética
3.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37665209

RESUMO

Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome.


Assuntos
Bacteriófagos , Glicoproteína da Espícula de Coronavírus , Humanos , Bactérias , Bacteriófagos/genética , Bacteroides/genética
4.
Sci Rep ; 13(1): 12747, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550406

RESUMO

Microbiomes confer beneficial physiological traits to their host, but microbial diversity is inherently variable, challenging the relationship between microbes and their contribution to host health. Here, we compare the diversity and architectural complexity of the epidermal microbiome from 74 individual whale sharks (Rhincodon typus) across five aggregations globally to determine if network properties may be more indicative of the microbiome-host relationship. On the premise that microbes are expected to exhibit biogeographic patterns globally and that distantly related microbial groups can perform similar functions, we hypothesized that microbiome co-occurrence patterns would occur independently of diversity trends and that keystone microbes would vary across locations. We found that whale shark aggregation was the most important factor in discriminating taxonomic diversity patterns. Further, microbiome network architecture was similar across all aggregations, with degree distributions matching Erdos-Renyi-type networks. The microbiome-derived networks, however, display modularity indicating a definitive microbiome structure on the epidermis of whale sharks. In addition, whale sharks hosted 35 high-quality metagenome assembled genomes (MAGs) of which 25 were present from all sample locations, termed the abundant 'core'. Two main MAG groups formed, defined here as Ecogroup 1 and 2, based on the number of genes present in metabolic pathways, suggesting there are at least two important metabolic niches within the whale shark microbiome. Therefore, while variability in microbiome diversity is high, network structure and core taxa are inherent characteristics of the epidermal microbiome in whale sharks. We suggest the host-microbiome and microbe-microbe interactions that drive the self-assembly of the microbiome help support a functionally redundant abundant core and that network characteristics should be considered when linking microbiomes with host health.


Assuntos
Microbiota , Tubarões , Animais , Tubarões/fisiologia , Epiderme , Células Epidérmicas , Microbiota/genética , Metagenoma
5.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131798

RESUMO

Phages dominate every ecosystem on the planet. While virulent phages sculpt the microbiome by killing their bacterial hosts, temperate phages provide unique growth advantages to their hosts through lysogenic conversion. Many prophages benefit their host, and prophages are responsible for genotypic and phenotypic differences that separate individual microbial strains. However, the microbes also endure a cost to maintain those phages: additional DNA to replicate and proteins to transcribe and translate. We have never quantified those benefits and costs. Here, we analysed over two and a half million prophages from over half a million bacterial genome assemblies. Analysis of the whole dataset and a representative subset of taxonomically diverse bacterial genomes demonstrated that the normalised prophage density was uniform across all bacterial genomes above 2 Mbp. We identified a constant carrying capacity of phage DNA per bacterial DNA. We estimated that each prophage provides cellular services equivalent to approximately 2.4 % of the cell's energy or 0.9 ATP per bp per hour. We demonstrate analytical, taxonomic, geographic, and temporal disparities in identifying prophages in bacterial genomes that provide novel targets for identifying new phages. We anticipate that the benefits bacteria accrue from the presence of prophages balance the energetics involved in supporting prophages. Furthermore, our data will provide a new framework for identifying phages in environmental datasets, diverse bacterial phyla, and from different locations.

6.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37066369

RESUMO

Microbial communities influence both human health and different environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies, and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of the challenges in viral assembly, fragmentation of genomes can occur, leading to the need for new approaches in viral identification. Therefore, the identification and characterisation of novel phages remain a challenge. We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. Phables is available on GitHub at https://github.com/Vini2/phables.

7.
Front Microbiol ; 14: 1031711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937279

RESUMO

Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.

8.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36945541

RESUMO

Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. Impact statement: Bacteriophages play a crucial role in shaping microbial communities within the human gut. Among the most dominant bacteriophages in the human gut microbiome are Crassvirales phages, which infect Bacteroides. Despite being widely distributed, only a few Crassvirales genomes have been isolated, leading to a limited understanding of their biology, ecology, and evolution. This study isolated and characterized three novel Crassvirales genomes belonging to two different families, and three genera, but infecting one bacterial host, Bacteroides cellulosilyticus WH2. Notably, the observation confirmed the phages are not co-evolving with their bacterial hosts, rather have a shared ability to exploit similar features in their bacterial host. Additionally, the identification of a critical viral protein undergoing purifying selection and interacting with the bacterial receptors opens doors to targeted therapies against bacterial infections. Given Bacteroides role in polysaccharide degradation in the human gut, our findings advance our understanding of the phage-host interactions and could have important implications for the development of phage-based therapies. These discoveries may hold implications for improving gut health and metabolism to support overall well-being. Data summary: The genomes used in this research are available on Sequence Read Archive (SRA) within the project, PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. ' frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11 are all available on GenBank with accessions NZ_CP072251.1 ( B. cellulosilyticus WH2), QQ198717 (Bc01), QQ198718 (Bc03), and QQ198719 (Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034.

9.
Microb Ecol ; 85(2): 747-764, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35129649

RESUMO

The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.


Assuntos
Microbiota , Tubarões , Animais , Epiderme
10.
Microb Ecol ; 86(1): 392-407, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35965269

RESUMO

The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Ecossistema , Metagenoma , Recifes de Corais , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Água do Mar/microbiologia
11.
Viruses ; 14(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36146775

RESUMO

The epidermal microbiome is a critical element of marine organismal immunity, but the epidermal virome of marine organisms remains largely unexplored. The epidermis of sharks represents a unique viromic ecosystem. Sharks secrete a thin layer of mucus which harbors a diverse microbiome, while their hydrodynamic dermal denticles simultaneously repel environmental microbes. Here, we sampled the virome from the epidermis of three shark species in the family Carcharhinidae: the genetically and morphologically similar Carcharhinus obscurus (n = 6) and Carcharhinus galapagensis (n = 10) and the outgroup Galeocerdo cuvier (n = 15). Virome taxonomy was characterized using shotgun metagenomics and compared with a suite of multivariate analyses. All three sharks retain species-specific but highly similar epidermal viromes dominated by uncharacterized bacteriophages which vary slightly in proportional abundance within and among shark species. Intraspecific variation was lower among C. galapagensis than among C. obscurus and G. cuvier. Using both the annotated and unannotated reads, we were able to determine that the Carcharhinus galapagensis viromes were more similar to that of G. cuvier than they were to that of C. obscurus, suggesting that behavioral niche may be a more prominent driver of virome than host phylogeny.


Assuntos
Bacteriófagos , Mergulho , Tubarões , Viroma , Animais , Bacteriófagos/genética , Ecossistema , Epiderme , Metagenômica
12.
J Microbiol Biol Educ ; 22(3)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34970386

RESUMO

Developing effective assessments of student learning is a challenging task for faculty and even more difficult for those in emerging disciplines that lack readily available resources and standards. With the power of technology-enhanced education and accessible digital learning platforms, instructors are also looking for assessments that work in an online format. This article will be useful for all teachers, but especially for entry-level instructors, in addition to more mature instructors who are looking to become more well versed in assessment, who seek a succinct summary of assessment types to springboard the integration of new forms of assessment of student learning into their courses. In this paper, ten assessment types, all appropriate for face-to-face, blended, and online modalities, are discussed. The assessments are mapped to a set of bioinformatics core competencies with examples of how they have been used to assess student learning. Although bioinformatics is used as the focus of the assessment types, the question types are relevant to many disciplines.

13.
Anim Microbiome ; 3(1): 61, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526135

RESUMO

Elasmobranchs (sharks, skates and rays) are of broad ecological, economic, and societal value. These globally important fishes are experiencing sharp population declines as a result of human activity in the oceans. Research to understand elasmobranch ecology and conservation is critical and has now begun to explore the role of body-associated microbiomes in shaping elasmobranch health. Here, we review the burgeoning efforts to understand elasmobranch microbiomes, highlighting microbiome variation among gastrointestinal, oral, skin, and blood-associated niches. We identify major bacterial lineages in the microbiome, challenges to the field, key unanswered questions, and avenues for future work. We argue for prioritizing research to determine how microbiomes interact mechanistically with the unique physiology of elasmobranchs, potentially identifying roles in host immunity, disease, nutrition, and waste processing. Understanding elasmobranch-microbiome interactions is critical for predicting how sharks and rays respond to a changing ocean and for managing healthy populations in managed care.

14.
Microbiome ; 8(1): 93, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534596

RESUMO

BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.


Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação
15.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127450

RESUMO

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.


Assuntos
Antozoários/microbiologia , Microbiota , Modelos Teóricos , Temperatura , Animais , Bermudas , Metagenômica , Interações Microbianas , Muco/microbiologia
16.
BMC Genomics ; 21(1): 126, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024463

RESUMO

BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Genes Bacterianos , Fatores de Virulência/genética , Bactérias/patogenicidade , Recifes de Corais , Ecossistema , Genoma Viral , Genômica
17.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922546

RESUMO

Microbial dispersal is essential for establishment in new habitats, but the role of vector identity is poorly understood in community assembly and function. Here, we compared microbial assembly and function in floral nectar visited by legitimate pollinators (hummingbirds) and nectar robbers (carpenter bees). We assessed effects of visitation on the abundance and composition of culturable bacteria and fungi and their taxonomy and function using shotgun metagenomics and nectar chemistry. We also compared metagenome-assembled genomes (MAGs) of Acinetobacter, a common and highly abundant nectar bacterium, among visitor treatments. Visitation increased microbial abundance, but robbing resulted in 10× higher microbial abundance than pollination. Microbial communities differed among visitor treatments: robbed flowers were characterized by predominant nectar specialists within Acetobacteraceae and Metschnikowiaceae, with a concurrent loss of rare taxa, and these resulting communities harbored genes relating to osmotic stress, saccharide metabolism and specialized transporters. Gene differences were mirrored in function: robbed nectar contained a higher percentage of monosaccharides. Draft genomes of Acinetobacter revealed distinct amino acid and saccharide utilization pathways in strains isolated from robbed versus pollinated flowers. Our results suggest an unrecognized cost of nectar robbing for pollination and distinct effects of visitor type on interactions between plants and pollinators. Overall, these results suggest vector identity is an underappreciated factor structuring microbial community assembly and function.


Assuntos
Microbiota , Néctar de Plantas , Animais , Abelhas , Aves , Flores , Polinização
18.
Mitochondrial DNA B Resour ; 5(3): 2080-2082, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33457750

RESUMO

We report the first mitochondrial genome sequences for the gray reef shark, Carcharhinus amblyrhynchos. Two specimens from the British Indian Ocean Territory were sequenced independently using two different next generation sequencing methods, namely short read sequencing on the Illumina HiSeq and long read sequencing on the Oxford Nanopore Technologies' MinION sequencer. The two sequences are 99.9% identical and are 16,705 base pairs (bp) and 16,706 bp in length. The mitogenome contains 22 tRNA genes, two rRNA genes, 13 protein-coding genes and two non-coding regions; the control region and the origin of light-strand replication (OL).

19.
Mitochondrial DNA B Resour ; 5(3): 2083-2084, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33457751

RESUMO

We present the first mitogenome sequence of the Smoothnose Wedgefish, Rhynchobatus laevis obtained through field sequencing on the MinION handheld sequencer. The mitochondrial genome of R. laevis is 16,560 bp in length and consisted of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a non-coding control region (D-loop). GC content was at 40.1%. The control region was 867 bp in length. Whole mitochondrial genome sequence of R. laevis will enable improved understanding of distribution, abundance, catch and trade rates of the Critically Endangered species.

20.
Mitochondrial DNA B Resour ; 5(3): 2085-2086, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33457752

RESUMO

The Chagos archipelago in the British Indian Ocean Territory (BIOT) has been lacking in detailed genetic studies of its chondrichthyan populations. Chondrichthyes in Chagos continue to be endangered through illegal fishing operations, necessitating species distribution and abundance studies to facilitate urgent monitoring and conservation of the species. Here, we present a complete mitochondrial genome of the Silvertip Shark, Carcharhinus albimarginatus sampled in the Chagos archipelago. The mitochondrial genome of C. albimarginatus was 16,706 bp in length and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, a replication origin and a D-loop region. GC content was at 38.7% and the control region was 1,065 bp in length. We expect that mitogenomes presented here will aid development of molecular assays for species distribution studies. Overall these studies will promote effective conservation of marine ecosystemes in the BIOT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...