Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 19(11): 2459-2472, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30073750

RESUMO

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Resistência à Doença , Ecótipo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum melongena/imunologia , Solanum melongena/microbiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Teste de Complementação Genética , Filogenia , Imunidade Vegetal , Raízes de Plantas/microbiologia , Domínios Proteicos , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/patogenicidade , Virulência , Dedos de Zinco
2.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370090

RESUMO

Eggplant cultivation is limited by numerous diseases, including the devastating bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC). Within the RSSC, Ralstonia pseudosolanacearum (including phylotypes I and III) causes severe damage to all solanaceous crops, including eggplant. Therefore, the creation of cultivars resistant to R. pseudosolanacearum strains is a major goal for breeders. An intraspecific eggplant population, segregating for resistance, was created from the cross between the susceptible MM738 and the resistant EG203 lines. The population of 123 doubled haploid lines was challenged with two strains belonging to phylotypes I (PSS4) and III (R3598), which both bypass the published EBWR9 BW-resistance quantitative trait locus (QTL). Ten and three QTLs of resistance to PSS4 and to R3598, respectively, were detected and mapped. All were strongly influenced by environmental conditions. The most stable QTLs were found on chromosomes 3 and 6. Given their estimated physical position, these newly detected QTLs are putatively syntenic with BW-resistance QTLs in tomato. In particular, the QTLs' position on chromosome 6 overlaps with that of the major broad-spectrum tomato resistance QTL Bwr-6. The present study is a first step towards understanding the complex polygenic system, which underlies the high level of BW resistance of the EG203 line.


Assuntos
Resistência à Doença/genética , Genótipo , Herança Multifatorial , Locos de Características Quantitativas , Solanum melongena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Ploidias , Ralstonia/patogenicidade , Solanum melongena/imunologia , Solanum melongena/microbiologia
3.
Front Plant Sci ; 8: 828, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580001

RESUMO

Bacterial wilt (BW) is a major disease of solanaceous crops caused by the Ralstonia solanacearum species complex (RSSC). Strains are grouped into five phylotypes (I, IIA, IIB, III, and IV). Varietal resistance is the most sustainable strategy for managing BW. Nevertheless, breeding to improve cultivar resistance has been limited by the pathogen's extensive genetic diversity. Identifying the genetic bases of specific and non-specific resistance is a prerequisite to breed improvement. A major gene (ERs1) was previously mapped in eggplant (Solanum melongena L.) using an intraspecific population of recombinant inbred lines derived from the cross of susceptible MM738 (S) × resistant AG91-25 (R). ERs1 was originally found to control three strains from phylotype I, while being totally ineffective against a virulent strain from the same phylotype. We tested this population against four additional RSSC strains, representing phylotypes I, IIA, IIB, and III in order to clarify the action spectrum of ERs1. We recorded wilting symptoms and bacterial stem colonization under controlled artificial inoculation. We constructed a high-density genetic map of the population using single nucleotide polymorphisms (SNPs) developed from genotyping-by-sequencing and added 168 molecular markers [amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), and sequence-related amplified polymorphisms (SRAPs)] developed previously. The new linkage map based on a total of 1,035 markers was anchored on eggplant, tomato, and potato genomes. Quantitative trait locus (QTL) mapping for resistance against a total of eight RSSC strains resulted in the detection of one major phylotype-specific QTL and two broad-spectrum QTLs. The major QTL, which specifically controls three phylotype I strains, was located at the bottom of chromosome 9 and corresponded to the previously identified major gene ERs1. Five candidate R-genes were underlying this QTL, with different alleles between the parents. The two other QTLs detected on chromosomes 2 and 5 were found to be associated with partial resistance to strains of phylotypes I, IIA, III and strains of phylotypes IIA and III, respectively. Markers closely linked to these three QTLs will be crucial for breeding eggplant with broad-spectrum resistance to BW. Furthermore, our study provides an important contribution to the molecular characterization of ERs1, which was initially considered to be a major resistance gene.

4.
Virol J ; 8: 389, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819593

RESUMO

BACKGROUND: Begomovirus is a genus of phytopathogenic single-stranded DNA viruses, transmitted by the whitefly Bemisia tabaci. This genus includes emerging and economically significant viruses such as those associated with Tomato Yellow Leaf Curl Disease, for which diagnostic tools are needed to prevent dispersion and new introductions. Five real-time PCRs with an internal tomato reporter gene were developed for accurate detection and quantification of monopartite begomoviruses, including two strains of the Tomato yellow leaf curl virus (TYLCV; Mld and IL strains), the Tomato leaf curl Comoros virus-like viruses (ToLCKMV-like viruses) and the two molecules of the bipartite Potato yellow mosaic virus. These diagnostic tools have a unique standard quantification, comprising the targeted viral and internal report amplicons. These duplex real-time PCRs were applied to artificially inoculated plants to monitor and compare their viral development. RESULTS: Real-time PCRs were optimized for accurate detection and quantification over a range of 2 × 10(9) to 2 × 10(3) copies of genomic viral DNA/µL for TYLCV-Mld, TYLCV-IL and PYMV-B and 2 × 10(8) to 2 × 10(3) copies of genomic viral DNA/µL for PYMV-A and ToLCKMV-like viruses. These real-time PCRs were applied to artificially inoculated plants and viral loads were compared at 10, 20 and 30 days post-inoculation. Different patterns of viral accumulation were observed between the bipartite and the monopartite begomoviruses. Interestingly, PYMV accumulated more viral DNA at each date for both genomic components compared to all the monopartite viruses. Also, PYMV reached its highest viral load at 10 dpi contrary to the other viruses (20 dpi). The accumulation kinetics of the two strains of emergent TYLCV differed from the ToLCKMV-like viruses in the higher quantities of viral DNA produced in the early phase of the infection and in the shorter time to reach this peak viral load. CONCLUSIONS: To detect and quantify a wide range of begomoviruses, five duplex real-time PCRs were developed in association with a novel strategy for the quantification standard. These assays should be of a great interest for breeding programs and epidemiological surveys to monitor viral populations.


Assuntos
Begomovirus/genética , Bioensaio , Impressões Digitais de DNA/métodos , Genoma Viral , Doenças das Plantas/virologia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Solanum lycopersicum/virologia , Animais , Sequência de Bases , Begomovirus/classificação , Begomovirus/isolamento & purificação , Bioensaio/normas , Impressões Digitais de DNA/normas , Primers do DNA/química , DNA de Cadeia Simples/análise , DNA de Cadeia Simples/genética , DNA Viral/análise , DNA Viral/genética , Hemípteros/virologia , Insetos Vetores/virologia , Solanum lycopersicum/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Folhas de Planta/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Carga Viral/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...