Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Ther ; 30(5): 443-454, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36450833

RESUMO

CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Humanos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Superóxido Dismutase-1/genética , Edição de Genes , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
2.
Cell Mol Gastroenterol Hepatol ; 14(6): 1269-1294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35970323

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Camundongos , Animais , Receptores de Interleucina/genética , Transdução de Sinais , Cirrose Hepática , Camundongos Knockout
3.
Mol Cell Neurosci ; 99: 103393, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356882

RESUMO

Enhancing remyelination is a key therapeutic strategy for demyelinating diseases such as multiple sclerosis. To achieve this goal, a central challenge is being able to quantitatively and longitudinally track functional remyelination, especially with translatable biomarkers that can be performed in both preclinical models and in the clinic. We developed the methodology to stably measure multi-modal sensory evoked potentials from the skull surface over the course of months in individual mice and applied it to a genetic mouse model of oligodendrocyte ablation and demyelination. We found that auditory and somatosensory evoked potential latencies reliably increased over time during the early phase of the model and recovered spontaneously and almost completely during a later phase. Histological examination supported the interpretation that the evoked potential latency changes dynamically reflect changes in CNS myelination. Specifically, we found reduction of myelination in corresponding brain regions at the time that sensory evoked potentials were maximally impacted. Importantly, we also found that myelination levels recovered when evoked potential latencies recovered. Other changes known to associate with demyelination were also observed at the time of delayed evoked potentials, including the emergence of white matter vacuoles and increased markers for activated microglia and macrophages; these changes also fully reversed by the time that evoked potentials recovered. Our results support the hypothesis that skull-surface recorded evoked potential latencies can dynamically track CNS myelination changes. The methods developed here allow for longitudinally tracking functional myelination changes in vivo in preclinical rodent models with a quantitative biomarker that can also be applied clinically and will facilitate translational development of CNS remyelinating therapies.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Evocados Auditivos , Potenciais Somatossensoriais Evocados , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
4.
Nanoscale ; 10(41): 19547-19556, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324958

RESUMO

The design of nanoparticles exposing a high density of antigens constitutes a promising strategy to address safety concerns of conventional life-attenuated vaccines as well as to increase the immunogenicity of subunit vaccines. In this study, we developed a fully synthetic nanovaccine based on an amyloid peptide sequence with high self-assembling properties. The immunogenic epitope E2EP3 from the E2 glycoprotein of the Chikungunya virus was used to evaluate the potential of a 10-mer peptide derived from an endogenous amyloidogenic polypeptide as a novel vaccine platform. Chimeric peptides, comprising the peptide antigen attached to the amyloid core by a short flexible linker, were prepared by solid phase synthesis. As observed using atomic force microscopy, these polypeptides self-assembled into linear and unbranched fibrils with a diameter ranging from 6 to 8 nm. A quaternary conformation rich in cross-ß-sheets characterized these assemblies, as demonstrated by circular dichroism spectroscopy and thioflavin T fluorescence. ELISA assays and transmission electronic microscopy of immunogold labeled-fibrils revealed a high density of the Chikungunya virus E2 glycoprotein derived epitope exposed on the fibril surface. These amyloid fibrils were cytocompatible and were efficiently uptaken by macrophages. Mice immunization revealed a robust IgG response against the E2EP3 epitope, which was dependent on self-assembly and did not require co-injection of the Alhydrogel adjuvant. These results indicate that cross-ß-sheet amyloid assemblies constitute suitable synthetic self-adjuvanted assemblies to anchor antigenic determinants and to increase the immunogenicity of peptide epitopes.


Assuntos
Proteínas Amiloidogênicas/química , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/metabolismo , Epitopos/química , Nanopartículas/química , Vacinas Sintéticas/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Febre de Chikungunya/veterinária , Febre de Chikungunya/virologia , Dicroísmo Circular , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Imunoglobulina G/sangue , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microscopia de Força Atômica , Peptídeos/síntese química , Peptídeos/química , Peptídeos/imunologia , Estrutura Secundária de Proteína , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
5.
J Org Chem ; 61(13): 4319-4327, 1996 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-11667332

RESUMO

The (1)H NMR spectra of 10-benzyl-9,11-diphenyl-10-azatetracyclo[6.3.0.0.(4,11)0.(5,9)]undecane (BnPh(2)()) and 10-methyl-9,11-diphenyl-10-azatetracyclo[6.3.0.0.(4,11)0.(5,9)]undecane (MePh(2)()) decoalesce due to slowing inversion at nitrogen and to slowing isolated bridgehead phenyl rotation. The high nitrogen inversion barriers in MePh(2)() (DeltaG() = 12.2 +/- 0.1 kcal/mol at 250 K) and BnPh(2)() (DeltaG() = 10.6 +/- 0.1 kcal/mol at 215 K) are typical of tertiary amines in which at least one C-N-C bond angle is constrained to a small value. Compared to the minuscule rotation barriers about sp(2)-sp(3) carbon-carbon bonds in simple molecular systems, the bridgehead phenyl rotation barriers in MePh(2)() (DeltaG() = 9.8 +/- 0.1 kcal/mol at 210 K) and BnPh(2)() (DeltaG() = 9.8 +/- 0.1 kcal/mol at 210 K) are unusually high. Molecular mechanics calculations (MMX force field) suggest that the origin of the high phenyl rotation barriers lies in the close passage of an o-phenyl proton and a methyl (or benzylmethylene) proton in the transition state. BnPh(2)() crystallized from hexane as white needles in the monoclinic system Pn. Unit cell dimensions are as follows: a = 12.198(1) Å, b = 6.1399(6) Å, c = 14.938(2) Å, beta = 107.470(4) degrees, V = 1067.1(2) Å(3), Z = 2. In the crystal molecular structure, the imine bridge CNC bond angle in BnPh(2)() is constrained to a small value (96 degrees ). The benzylic phenyl group is oriented gauche to the nitrogen lone pair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...