Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645014

RESUMO

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

3.
NPJ Precis Oncol ; 8(1): 87, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589664

RESUMO

Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.

5.
Sci Rep ; 13(1): 20567, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996508

RESUMO

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sesquiterpenos , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Reparo do DNA , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Dano ao DNA , Raios Ultravioleta , Proteína Grupo D do Xeroderma Pigmentoso/genética
6.
Nat Med ; 29(11): 2737-2741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865722

RESUMO

Although circulating tumor DNA (ctDNA) assays are increasingly used to inform clinical decisions in cancer care, they have limited ability to identify the transcriptional programs that govern cancer phenotypes and their dynamic changes during the course of disease. To address these limitations, we developed a method for comprehensive epigenomic profiling of cancer from 1 ml of patient plasma. Using an immunoprecipitation-based approach targeting histone modifications and DNA methylation, we measured 1,268 epigenomic profiles in plasma from 433 individuals with one of 15 cancers. Our assay provided a robust proxy for transcriptional activity, allowing us to infer the expression levels of diagnostic markers and drug targets, measure the activity of therapeutically targetable transcription factors and detect epigenetic mechanisms of resistance. This proof-of-concept study in advanced cancers shows how plasma epigenomic profiling has the potential to unlock clinically actionable information that is currently accessible only via direct tissue sampling.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Epigenômica , Biomarcadores Tumorais/genética , Neoplasias/genética , DNA Tumoral Circulante/genética , Biópsia Líquida/métodos , Mutação
7.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798363

RESUMO

Purpose: Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design: We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results: Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions: ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.

8.
JNCI Cancer Spectr ; 6(1)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35079693

RESUMO

Background: Altered DNA damage response (DDR) has emerged as an important mechanism for the development of aggressive prostate cancer among men of European ancestry but not other ancestry groups. Because common mechanisms for aggressive disease are expected, we explored a large panel of DDR genes and pathways to demonstrate that DDR alterations contribute to development of aggressive prostate cancer in both African American and European American men. Methods: We performed a case-case study of 764 African American and European American men with lethal or indolent prostate cancer treated at 4 US hospitals. We calculated carrier frequencies of germline pathogenic or likely pathogenic sequence variants within 306 DDR genes, summarized by DDR pathway, and compared lethal cases against indolent cases using 2-sided Fisher's exact tests. Secondary analysis examined if carrier frequencies differed by ancestry. Results: Lethal cases were more likely to carry a pathogenic sequence variant in a DDR gene compared with indolent cases (18.5% vs 9.6%, P = 4.30 × 10-4), even after excluding BRCA2 (14.6% vs 9.6%, P = .04). The carrier frequency was similar among lethal cases of African (16.7% including and 15.8% excluding BRCA2) and lethal cases of European (19.3% including and 14.2% excluding BRCA2) ancestry. Three DDR pathways were statistically significantly associated with lethal disease: homologous recombination (P = .003), Fanconi anemia (P = .002), and checkpoint factor (P = .02). Conclusions: Our findings suggest that altered DDR is an important mechanism for aggressive prostate cancer not only in men of European but also of African ancestry. Therefore, interrogation of entire DDR pathways is needed to fully characterize and better define genetic risk of lethal disease.


Assuntos
Negro ou Afro-Americano/genética , Distúrbios no Reparo do DNA/genética , Reparo do DNA/genética , Neoplasias da Próstata/genética , População Branca/genética , Idoso , Reparo de Erro de Pareamento de DNA/genética , Anemia de Fanconi/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/etnologia
9.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607954

RESUMO

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Assuntos
Proteína BRCA1/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Perda de Heterozigosidade/genética , Proteína Supressora de Tumor p53/genética , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Perda de Heterozigosidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Clin Cancer Res ; 27(20): 5681-5687, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380641

RESUMO

PURPOSE: Homologous recombination (HR) deficiency (HRD) is one of the key determinants of PARP inhibitor response in ovarian cancer, and its accurate detection in tumor biopsies is expected to improve the efficacy of this therapy. Because HRD induces a wide array of genomic aberrations, mutational signatures may serve as a companion diagnostic to identify PARP inhibitor-responsive cases. EXPERIMENTAL DESIGN: From the The Cancer Genome Atlas (TCGA) whole-exome sequencing (WES) data, we extracted different types of mutational signature-based HRD measures, such as the HRD score, genome-wide LOH, and HRDetect trained on ovarian and breast cancer-specific sequencing data. We compared their performance to identify BRCA1/2-deficient cases in the TCGA ovarian cancer cohort and predict survival benefit in platinum-treated, BRCA1/2 wild-type ovarian cancer. RESULTS: We found that the HRD score, which is based on large chromosomal alterations alone, performed similarly well to an ovarian cancer-specific HRDetect, which incorporates mutations on a finer scale as well (AUC = 0.823 vs. AUC = 0.837). In an independent cohort these two methods were equally accurate predicting long-term survival after platinum treatment (AUC = 0.787 vs. AUC = 0.823). We also found that HRDetect trained on ovarian cancer was more accurate than HRDetect trained on breast cancer data (AUC = 0.837 vs. AUC = 0.795; P = 0.0072). CONCLUSIONS: When WES data are available, methods that quantify only large chromosomal alterations such as the HRD score and HRDetect that captures a wider array of HRD-induced genomic aberrations are equally efficient identifying HRD ovarian cancer cases.


Assuntos
Recombinação Homóloga/genética , Mutação , Neoplasias Ovarianas/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
11.
NPJ Precis Oncol ; 5(1): 55, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145376

RESUMO

PARP inhibitors are approved for the treatment of solid tumor types that frequently harbor alterations in the key homologous recombination (HR) genes, BRCA1/2. Other tumor types, such as lung cancer, may also be HR deficient, but the frequency of such cases is less well characterized. Specific DNA aberration profiles (mutational signatures) are induced by homologous recombination deficiency (HRD) and their presence can be used to assess the presence or absence of HR deficiency in a given tumor biopsy even in the absence of an observed alteration of an HR gene. We derived various HRD-associated mutational signatures from whole-genome and whole-exome sequencing data in the lung adenocarcinoma and lung squamous carcinoma cases from TCGA, and in a patient of ours with stage IVA lung cancer with exceptionally good response to platinum-based therapy, and in lung cancer cell lines. We found that a subset of the investigated cases, both with and without biallelic loss of BRCA1 or BRCA2, showed robust signs of HR deficiency. The extreme platinum responder case also showed a robust HRD-associated genomic mutational profile. HRD-associated mutational signatures were also associated with PARP inhibitor sensitivity in lung cancer cell lines. Consequently, lung cancer cases with HRD, as identified by diagnostic mutational signatures, may benefit from PARP inhibitor therapy.

12.
Clin Cancer Res ; 27(13): 3734-3743, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33947694

RESUMO

PURPOSE: Poly (ADP ribose)-polymerase (PARP) inhibitors are approved for use in breast, ovarian, prostate, and pancreatic cancers, which are the solid tumor types that most frequently have alterations in key homologous recombination (HR) genes, such as BRCA1/2. However, the frequency of HR deficiency (HRD) in other solid tumor types, including bladder cancer, is less well characterized. EXPERIMENTAL DESIGN: Specific DNA aberration profiles (mutational signatures) are induced by HRD, and the presence of these "genomic scars" can be used to assess the presence or absence of HRD in a given tumor biopsy even in the absence of an observed alteration of an HR gene. Using whole-exome and whole-genome data, we measured various HRD-associated mutational signatures in bladder cancer. RESULTS: We found that a subset of bladder tumors have evidence of HRD. In addition to a small number of tumors with biallelic BRCA1/2 events, approximately 10% of bladder tumors had significant evidence of HRD-associated mutational signatures. Increased levels of HRD signatures were associated with promoter methylation of RBBP8, which encodes CtIP, a key protein involved in HR. CONCLUSIONS: A subset of bladder tumors have genomic features suggestive of HRD and therefore may be more likely to benefit from therapies such as platinum agents and PARP inhibitors that target tumor HRD.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Recombinação Homóloga , Mutação , Neoplasias da Bexiga Urinária/genética , Humanos
13.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015811

RESUMO

Formalin-fixed paraffin-embedded tissue, the most common tissue specimen stored in clinical practice, presents challenges in the analysis due to formalin-induced artifacts. Here, we present Strand Orientation Bias Detector (SOBDetector), a flexible computational platform compatible with all the common somatic SNV-calling pipelines, designed to assess the probability whether a given detected mutation is an artifact. The underlying predictor mechanism is based on the posterior distribution of a Bayesian logistic regression model trained on The Cancer Genome Atlas whole exomes. SOBDetector is a freely available cross-platform program, implemented in Java 1.8.


Assuntos
Artefatos , Técnicas Citológicas/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Modelos Estatísticos , Análise de Sequência de DNA/normas , Moldes Genéticos , Algoritmos , DNA de Neoplasias , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
14.
Clin Cancer Res ; 27(7): 2011-2022, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208343

RESUMO

PURPOSE: Cisplatin-based chemotherapy is a first-line treatment for muscle-invasive and metastatic urothelial cancer. Approximately 10% of bladder urothelial tumors have a somatic missense mutation in the nucleotide excision repair (NER) gene, ERCC2, which confers increased sensitivity to cisplatin-based chemotherapy. However, a significant subset of patients is ineligible to receive cisplatin-based therapy due to medical contraindications, and no NER-targeted approaches are available for platinum-ineligible or platinum-refractory ERCC2-mutant cases. EXPERIMENTAL DESIGN: We used a series of NER-proficient and NER-deficient preclinical tumor models to test sensitivity to irofulven, an abandoned anticancer agent. In addition, we used available clinical and sequencing data from multiple urothelial tumor cohorts to develop and validate a composite mutational signature of ERCC2 deficiency and cisplatin sensitivity. RESULTS: We identified a novel synthetic lethal relationship between tumor NER deficiency and sensitivity to irofulven. Irofulven specifically targets cells with inactivation of the transcription-coupled NER (TC-NER) pathway and leads to robust responses in vitro and in vivo, including in models with acquired cisplatin resistance, while having minimal effect on cells with intact NER. We also found that a composite mutational signature of ERCC2 deficiency was strongly associated with cisplatin response in patients and was also associated with cisplatin and irofulven sensitivity in preclinical models. CONCLUSIONS: Tumor NER deficiency confers sensitivity to irofulven, a previously abandoned anticancer agent, with minimal activity in NER-proficient cells. A composite mutational signature of NER deficiency may be useful in identifying patients likely to respond to NER-targeting agents, including cisplatin and irofulven.See related commentary by Jiang and Greenberg, p. 1833.


Assuntos
Antineoplásicos , Sesquiterpenos , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Cisplatino , Reparo do DNA/genética , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Proteína Grupo D do Xeroderma Pigmentoso
15.
Clin Cancer Res ; 26(11): 2673-2680, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32071115

RESUMO

PURPOSE: Prostate cancers with mutations in genes involved in homologous recombination (HR), most commonly BRCA2, respond favorably to PARP inhibition and platinum-based chemotherapy. We investigated whether other prostate tumors that do not harbor deleterious mutations in these particular genes can similarly be deficient in HR, likely rendering those sensitive to HR-directed therapies. EXPERIMENTAL DESIGN: Homologous recombination deficiency (HRD) levels can be estimated using various mutational signatures derived from next-generation sequencing data. We used this approach on whole-genome sequencing (WGS; n = 311) and whole-exome sequencing (WES) data (n = 498) of both primary and metastatic prostate adenocarcinomas to determine whether prostate cancer cases display clear signs of HRD in somatic tumor biopsies. RESULTS: Known BRCA-deficient samples showed all previously described HRD-associated mutational signatures in the WGS data. HRD-associated mutational signatures were also detected in a subset of patients who did not harbor germline or somatic mutations in BRCA1/2 or other HR-related genes. Similar results, albeit with lower sensitivity and accuracy, were also obtained from WES data. CONCLUSIONS: These findings may expand the number of cases likely to respond to PARP inhibitor treatment. On the basis of the HR-associated mutational signatures, 5% to 8% of localized prostate cancer cases may be good candidates for PARP-inhibitor treatment (including those with BRCA1/2 mutations).


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recombinação Homóloga , Mutação , Neoplasias da Próstata/genética , Humanos , Masculino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Sequenciamento do Exoma
16.
NPJ Breast Cancer ; 4: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978035

RESUMO

The first genomic scar-based homologous recombination deficiency (HRD) measures were produced using SNP arrays. As array-based technology has been largely replaced by next generation sequencing approaches, it has become important to develop algorithms that derive the same type of genomic scar scores from next generation sequencing (whole exome "WXS", whole genome "WGS") data. In order to perform this analysis, we introduce here the scarHRD R package and show that using this method the SNP array-based and next generation sequencing-based derivation of HRD scores show good correlation (Pearson correlation between 0.73 and 0.87 depending on the actual HRD measure) and that the NGS-based HRD scores distinguish similarly well between BRCA mutant and BRCA wild-type cases in a cohort of triple-negative breast cancer patients of the TCGA data set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...