Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1050198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714776

RESUMO

Introduction: Advances in genotyping technologies have provided breeders with access to the genotypic values of several thousand genetic markers in their breeding materials. Combined with phenotypic data, this information facilitates genomic selection. Although genomic selection can benefit breeders, it does not guarantee efficient genetic improvement. Indeed, multiple components of breeding schemes may affect the efficiency of genetic improvement and controlling all components may not be possible. In this study, we propose a new application of Bayesian optimisation for optimizing breeding schemes under specific constraints using computer simulation. Methods: Breeding schemes are simulated according to nine different parameters. Five of those parameters are considered constraints, and 4 can be optimised. Two optimisation methods are used to optimise those parameters, Bayesian optimisation and random optimisation. Results: The results show that Bayesian optimisation indeed finds breeding scheme parametrisations that provide good breeding improvement with regard to the entire parameter space and outperforms random optimisation. Moreover, the results also show that the optimised parameter distributions differ according to breeder constraints. Discussion: This study is one of the first to apply Bayesian optimisation to the design of breeding schemes while considering constraints. The presented approach has some limitations and should be considered as a first proof of concept that demonstrates the potential of Bayesian optimisation when applied to breeding schemes. Determining a general "rule of thumb" for breeding optimisation may be difficult and considering the specific constraints of each breeding campaign is important for finding an optimal breeding scheme.

2.
Front Plant Sci ; 9: 1544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405675

RESUMO

Sorghum (Sorghum bicolor L. Moench) is a C4 tropical grass that plays an essential role in providing nutrition to humans and livestock, particularly in marginal rainfall environments. The timing of head development and the number of heads per unit area are key adaptation traits to consider in agronomy and breeding but are time consuming and labor intensive to measure. We propose a two-step machine-based image processing method to detect and count the number of heads from high-resolution images captured by unmanned aerial vehicles (UAVs) in a breeding trial. To demonstrate the performance of the proposed method, 52 images were manually labeled; the precision and recall of head detection were 0.87 and 0.98, respectively, and the coefficient of determination (R 2) between the manual and new methods of counting was 0.84. To verify the utility of the method in breeding programs, a geolocation-based plot segmentation method was applied to pre-processed ortho-mosaic images to extract >1000 plots from original RGB images. Forty of these plots were randomly selected and labeled manually; the precision and recall of detection were 0.82 and 0.98, respectively, and the coefficient of determination between manual and algorithm counting was 0.56, with the major source of error being related to the morphology of plants resulting in heads being displayed both within and outside the plot in which the plants were sown, i.e., being allocated to a neighboring plot. Finally, the potential applications in yield estimation from UAV-based imagery from agronomy experiments and scouting of production fields are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...