Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Res ; : 119221, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795951

RESUMO

PER: and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ EM phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.

2.
Environ Pollut ; 352: 124109, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718961

RESUMO

Exposure assessment is a crucial component of environmental health research, providing essential information on the potential risks associated with various chemicals. A systematic scoping review was conducted to acquire an overview of accessible human exposure assessment methods and computational tools to support and ultimately improve risk assessment. The systematic scoping review was performed in Sysrev, a web platform that introduces machine learning techniques into the review process aiming for increased accuracy and efficiency. Included publications were restricted to a publication date after the year 2000, where exposure methods were properly described. Exposure assessments methods were found to be used for a broad range of environmental chemicals including pesticides, metals, persistent chemicals, volatile organic compounds, and other chemical classes. Our results show that after the year 2000, for all the types of exposure routes, probabilistic analysis, and computational methods to calculate human exposure have increased. Sixty-three mathematical models and toolboxes were identified that have been developed in Europe, North America, and globally. However, only twelve occur frequently and their usefulness were associated with exposure route, chemical classes and input parameters used to estimate exposure. The outcome of the combined associations can function as a basis and/or guide for decision making for the selection of most appropriate method and tool to be used for environmental chemical human exposure assessments in Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX) project and elsewhere. Finally, the choice of input parameters used in each mathematical model and toolbox shown by our analysis can contribute to the harmonization process of the exposure models and tools increasing the prospect for comparison between studies and consistency in the regulatory process in the future.

4.
Front Toxicol ; 6: 1359507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742231

RESUMO

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

5.
Biomed Pharmacother ; 174: 116530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574623

RESUMO

BACKGROUND: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs. METHODS: DIC-related articles were searched by keywords and Boolean operators in seven databases. Relevant articles were uploaded onto Sysrev, a machine-learning based platform for article review and data extraction. Demographic, clinical, biochemical, and liver histopathological data were collected. Drug properties were obtained from databases or QSAR modelling. Statistical analyses and logistic regressions were performed. RESULTS: Data from 432 DIC patients associated with 52 drugs were collected. Fibrosis strongly associated with fatality, whereas canalicular paucity and ALP associated with chronicity. Drugs causing cholestasis clustered in three major groups. The pure cholestatic pattern divided into two subphenotypes with differences in prognosis, canalicular paucity, fibrosis, ALP and bilirubin. A predictive model of DIC outcome based on non-invasive parameters and drug properties was developed. Results demonstrate that physicochemical (pKa-a) and pharmacokinetic (bioavailability, CYP2C9) attributes impinged on the DIC phenotype and allowed the identification of high-concern drugs. CONCLUSIONS: We identified novel associations among DIC manifestations and disclosed novel DIC subphenotypes with specific clinical and chemical traits. The developed predictive DIC outcome model could facilitate DIC prognosis in clinical practice and drug categorization.


Assuntos
Colestase , Aprendizado de Máquina , Fenótipo , Humanos , Colestase/induzido quimicamente , Masculino , Feminino , Prognóstico , Bases de Dados Factuais , Pessoa de Meia-Idade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Adulto , Idoso
6.
Environ Int ; 184: 108474, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350256

RESUMO

Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.


Assuntos
Rotas de Resultados Adversos , Modelos Biológicos , Animais , Humanos , Toxicocinética , Monitoramento Biológico , Medição de Risco/métodos
7.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147116

RESUMO

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Assuntos
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidade , Micotoxinas/análise , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Lactonas/toxicidade , Lactonas/metabolismo , Medição de Risco , Contaminação de Alimentos/análise
8.
Food Chem Toxicol ; 180: 114031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696467

RESUMO

Acrylamide is a probable human carcinogen with widespread exposure via food. The present study compared acrylamide intake measurements obtained from haemoglobin adduct levels and self-registered dietary consumption data in a group of 144 Norwegian healthy adults. Acrylamide adducts to N-terminal valine in haemoglobin were measured and used to estimate the intake via the internal dose approach which showed a median (interquartile range) of 0.24 (0.19-0.30) µg/kg bw/day. Data from weighed food records and food frequency questionnaires from the same individuals were used for probabilistic modelling of the intake of acrylamide. The median acrylamide intake was calculated to be 0.26 (0.16-0.39) and 0.30 (0.23-0.39) µg/kg bw/day, respectively from the two sources of self-registered dietary consumption data. Overall, a relatively good agreement was observed between the methods in pairwise comparison in Bland-Altman plots, with the methods disagreeing with 7% or less of the values. The intake estimates obtained with the two dietary consumption methods and one biomarker method are in line with earlier dietary estimates in the Norwegian population. The Margin of Exposure indicate a possible health risk concern from dietary acrylamide. This is the first study with a comparison in the same individuals of acrylamide intake estimates obtained with these methods.


Assuntos
Acrilamida , Monitoramento Biológico , Adulto , Humanos , Dieta , Noruega , Hemoglobinas , Ingestão de Alimentos
9.
Environ Res ; 222: 115377, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709869

RESUMO

Exposure to phthalates is widespread in Europe. Phthalates are considered endocrine disrupting compounds and are classified as toxic for reproduction. However how phthalates affect the transcriptome in humans remains largely unknown. To investigate the effects of phthalate exposure on the transcriptomic profile we conducted RNA sequencing on peripheral blood samples from the Norwegian EuroMix cohort. We compared gene expression changes between participants with high, medium, and low exposure of six phthalates and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). Comparing high and low exposure groups, DINCH was the compound that showed the highest number of differentially expressed genes (126 genes) followed by mono-n-butyl phthalate (MnBP; 89 genes) and mono-iso-nonyl phthalate (MiBP; 70 genes). Distributions between up- or down-regulated genes were similar across the different phthalates and DINCH. All phthalates including DINCH shared common differentially expressed genes ranging from 3 to 37 overlaps. Enriched Gene Ontology (GO) and biological pathway analysis revealed that most of the differentially expressed genes were associated with general cellular metabolism GO terms. MnBP and DINCH, particularly, showed a marked enrichment in various immunological function pathways including neutrophil degranulation, adaptive immune system and signaling by interleukins. Furthermore, the association between genes involved in the peroxisome proliferator activated receptor (PPAR) signaling pathway and phthalates, including DINCH, was evaluated. In total, 15 genes showed positive or negative associations across 5 phthalates and DINCH. MnBP and MiBP were the phthalate metabolites with the highest number of associations: 8 and 4 PPAR signaling pathway genes, respectively. Overall, we have performed an association study between phthalate exposure levels and modulation of transcriptomic profiles in human peripheral blood cells. DINCH, which is often mentioned as a substitute for phthalates, had comparable effects on differential gene expression in peripheral blood cells as phthalates.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Exposição Ambiental/análise , Receptores Ativados por Proliferador de Peroxissomo , Ácidos Dicarboxílicos , Reprodução
10.
Front Allergy ; 3: 1029125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483186

RESUMO

Food allergy is an increasing public health challenge worldwide. It has recently been hypothesized that the increase in exposure to intestinal epithelial barrier-damaging biological and chemical agents contribute to this development. In animal models, exposure to adjuvants with a food allergen has been shown to promote sensitization and development of food allergy, and barrier disrupting capacities have been suggested to be one mechanism of adjuvant action. Here, we investigated how gut barrier disrupting compounds affected food allergy development in a mouse model of peanut allergy. Sensitization and clinical peanut allergy in C3H/HEOuJ mice were assessed after repeated oral exposure to peanut extract together with cholera toxin (CT; positive control), the mycotoxin deoxynivalenol (DON), house dust mite (HDM) or the pesticide glyphosate (GLY). In addition, we investigated early effects 4 to 48 h after a single exposure to the compounds by assessing markers of intestinal barrier permeability, alarmin production, intestinal epithelial responses, and local immune responses. CT and DON exerted adjuvant effects on peanut allergy development assessed as clinical anaphylaxis in mice. Early markers were affected only by DON, observed as increased IL-33 (interleukin 33) and thymic stromal lymphopoietin (TSLP) alarmin production in intestines and IL-33 receptor ST2 in serum. DON also induced an inflammatory immune response in lymph node cells stimulated with lipopolysaccharide (LPS). HDM and GLY did not clearly promote clinical food allergy and affected few of the early markers at the doses tested. In conclusion, oral exposure to CT and DON promoted development of clinical anaphylaxis in the peanut allergy mouse model. DON, but not CT, affected the early markers measured in this study, indicating that DON and CT have different modes of action at the early stages of peanut sensitization.

11.
Metabolomics ; 18(11): 87, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329300

RESUMO

INTRODUCTION: Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized. OBJECTIVES: Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS). METHODS: Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS. RESULTS: Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. CONCLUSION: Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fluorocarbonos , Humanos , Camundongos , Animais , Poluentes Orgânicos Persistentes , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/induzido quimicamente , Metabolômica , Metaboloma
12.
Environ Int ; 168: 107476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067553

RESUMO

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

13.
Neurotoxicology ; 92: 33-48, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835329

RESUMO

Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10-8 - 3 ×10-3 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes. Effects on cell viability was measured using Alamar Blue™ cell viability assay, alterations in gene expression were assessed using real time PCR and RNA sequencing, and protein levels were quantified using immunocytochemistry and high content imaging. Effects of AA and GA on neurodevelopmental processes were evaluated using endpoints linked to common key events identified in the existing developmental neurotoxicity adverse outcome pathways (AOPs). Our results suggest that AA and GA at low concentrations (1 ×10-7 - 1 ×10-8 M) increased cell viability and markers of proliferation both in proliferating NSCs (7 days) and in maturing neurons after 14-28 days of differentiation. IC50 for cell death of AA and GA was 5.2 × 10-3 M and 5.8 × 10-4 M, respectively, showing about ten times higher potency for GA. Increased expression of brain derived neurotrophic factor (BDNF) concomitant with decreased synaptogenesis were observed for GA exposure (10-7 M) only at later differentiation stages, and an increased number of astrocytes (up to 3-fold) at 14 and 21 days of differentiation. Also, AA exposure gave tendency towards decreased differentiation (increased percent Nestin positive cells). After 28 days, neurite branch points and number of neurites per neuron measured by microtubule-associated protein 2 (Map2) staining decreased, while the same neurite features measured by ßIII-Tubulin increased, indicating perturbation of neuronal differentiation and maturation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes Neurotóxicas , Acrilamida/toxicidade , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Compostos de Epóxi , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Proteínas Associadas aos Microtúbulos , Nestina , Neurônios/metabolismo , Gravidez , Tubulina (Proteína)
14.
Environ Pollut ; 308: 119664, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738521

RESUMO

Exposure to per- and polyfluoroalkyl substances (PFASs) is associated with increased blood cholesterol. Although elevated cholesterol is a well-established risk factor for cardiovascular diseases (CVD), it is not clear whether PFASs affect this risk. Lipoprotein subclasses are emerging biomarkers for disease risk and lipoprotein profiling may provide an insight to physiological implications of PFAS exposure. We explored the association between serum PFAS concentrations and lipoprotein subclasses in a cross-sectional study. We determined the concentrations and lipid composition of the major subclasses of lipoproteins in plasma samples from 127 adult participants of the EuroMix human biomonitoring study by nuclear magnetic resonance (NMR). Serum concentrations of 17 PFASs showed a detection frequency between 30 and 100% and were included in further analyses. We examined the associations between PFAS concentrations and lipoprotein subclasses by linear mixed-effect regression models, adjusted for confounders. In the adjusted models, positive associations were found between several PFASs and cholesterol concentrations in large to medium sized HDL and medium sized LDL particles. We found a 4-12% increase in HDL cholesterol per interquartile range (IQR) increase for several PFASs. In women the associations with PFNA, PFUnDA, PFDoDA and PFOS were significant after adjustment for multiple comparisons. Similar magnitude of change was observed between longer chained PFASs and LDL cholesterol, and a few of these associations reached significance for cholesterol in large to medium LDL particle sizes in women. No significant associations with plasma triglycerides were observed. However, most PFASs tended to be associated with reduction in VLDL (very low-density lipoproteins) particle number and VLDL triglyceride. Findings from this exploratory study, suggest that background PFAS exposures influence particle size distributions and lipid composition of plasma lipoprotein subclasses, and that these effects may be more prominent in women. A two-points lipoprofiling for all subjects indicated both low intra-individual variability and good analytical reproducibility.


Assuntos
Fluorocarbonos , Adulto , Monitoramento Biológico , Colesterol , Estudos Transversais , Feminino , Humanos , Lipoproteínas , Reprodutibilidade dos Testes
15.
Toxics ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448442

RESUMO

Much evidence on the adverse health effects of endocrine-disrupting chemicals (EDCs) has accumulated during recent decades. EDCs are commonly found in various foods and personal care products (PCP). Data documenting a diurnally varying EDC metabolism in humans is scarce. This study examined (i) the time-of-day effect on the diurnal magnitude and variance of urinary biomarkers of exposure to EDCs, and (ii) the association between EDC exposures and oxidative damage in a Norwegian adult subpopulation. This was a cross-sectional panel study using biobanked samples from the EuroMix project. During a typical weekday, participants were asked to collect all day's urine voids and record dietary and PCP habitual uses in a diary. Collected time stamps of urine voids were classified into three distinct periods in the day (morning 6 a.m.−12 p.m., mid-day 12 p.m.−6 p.m., evening 6 p.m.−6 a.m.). Questionnaires regarding demographic characteristics, personal care product usage, and dietary habits were completed. Urinary levels of EDCs (phthalates, parabens, and bisphenols) were measured using mass spectrometry and adjusted for urinary volume using specific gravity. Urinary 4-hydroxynonenal (4HNE), a lipid peroxidation marker, was measured using an immunoassay kit. Linear mixed-effect models identified EDCs under the influence of a diurnal variation effect that was adjusted for dietary habits and PCP use and examined associations between EDC and 4HNE. p-values were FDR-adjusted. Most phthalates appeared to be diurnally varying with higher urinary levels towards the evening (q < 0.001) than those measured during mid-day; this strong diurnal variation effect was not present for parabens and bisphenols. Significant (q < 0.001) positive associations were observed between all phthalates, parabens, and bisphenols (except bisphenol S) and 4HNE. This study's findings highlighted the diurnal variation of excretion for certain EDC, but not for others, in real-life conditions. The degree of EDC chronotoxicity in distinct diurnal windows of the day warrants further investigation with longitudinal human studies.

16.
Toxins (Basel) ; 14(4)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448888

RESUMO

Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.


Assuntos
Rotas de Resultados Adversos , Fumonisinas , Micotoxinas , Animais , Sobrevivência Celular , Fumonisinas/toxicidade , Humanos , Micotoxinas/farmacologia , Tricotecenos
17.
Environ Epidemiol ; 6(1): e193, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169671

RESUMO

Immune-mediated, noncommunicable diseases-such as autoimmune and inflammatory diseases-are chronic disorders, in which the interaction between environmental exposures and the immune system plays an important role. The prevalence and societal costs of these diseases are rising in the European Union. The EXIMIOUS consortium-gathering experts in immunology, toxicology, occupational health, clinical medicine, exposure science, epidemiology, bioinformatics, and sensor development-will study eleven European study populations, covering the entire lifespan, including prenatal life. Innovative ways of characterizing and quantifying the exposome will be combined with high-dimensional immunophenotyping and -profiling platforms to map the immune effects (immunome) induced by the exposome. We will use two main approaches that "meet in the middle"-one starting from the exposome, the other starting from health effects. Novel bioinformatics tools, based on systems immunology and machine learning, will be used to integrate and analyze these large datasets to identify immune fingerprints that reflect a person's lifetime exposome or that are early predictors of disease. This will allow researchers, policymakers, and clinicians to grasp the impact of the exposome on the immune system at the level of individuals and populations.

18.
Toxins (Basel) ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34678968

RESUMO

The dietary exposure to the mycotoxin deoxynivalenol (DON) can be assessed by human biomonitoring (HBM). Here, we assessed the relation between dietary DON intake and the excretion of its major metabolite DON-15-glucuronide (DON15GlcA) through time, in an everyday situation. For 49 volunteers from the EuroMix biomonitoring study, the intake of DON from each meal was calculated and the excretion of DON and its metabolites was analyzed for each urine void collected separately throughout a 24-h period. The relation between DON and DON15GlcA was analyzed with a statistical model to assess the residence time and the excreted fraction of ingested DON as DON15GlcA (fabs_excr). Fabs_excr was treated as a random effect variable to address its heterogeneity in the population. The estimated time in which 97.5% of the ingested DON was excreted as DON15GlcA was 12.1 h, the elimination half-life was 4.0 h. Based on the estimated fabs_excr, the mean reversed dosimetry factor (RDF) of DON15GlcA was 2.28. This RDF can be used to calculate the amount of total DON intake in an everyday situation, based on the excreted amount of DON15GlcA. We show that urine samples collected over 24 h are the optimal design to study DON exposure by HBM.


Assuntos
Exposição Dietética/análise , Glucuronídeos/urina , Eliminação Renal , Tricotecenos/urina , Adulto , Monitoramento Biológico , Feminino , Contaminação de Alimentos/análise , Glucuronídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Tricotecenos/metabolismo
19.
Front Genet ; 12: 721507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646301

RESUMO

Exposure to Per- and polyfluoroalkyl substances (PFAS) has been linked to multiple undesirable health outcomes across a full lifespan, both in animal models as well as in human epidemiological studies. Immunosuppressive effects of PFAS have been reported, including increased risk of infections and suppressed vaccination responses in early childhood, as well as association with immunotoxicity and diabetes. On a mechanistic level, PFAS exposure has been linked with metabolic disturbances, particularly in lipid metabolism, but the underlying mechanisms are poorly characterized. Herein we explore lipidomic signatures of prenatal and early-life exposure to perfluoroundecanoic acid (PFUnDA) in non-obese diabetic (NOD) mice; an experimental model of autoimmune diabetes. Female NOD mice were exposed to four levels of PFUnDA in drinking water at mating, during gestation and lactation, and during the first weeks of life of female offspring. At offspring age of 11-12 weeks, insulitis and immunological endpoints were assessed, and serum samples were collected for comprehensive lipidomic analyses. We investigated the associations between exposure, lipidomic profile, insulitis grade, number of macrophages and apoptotic, active-caspase-3-positive cells in pancreatic islets. Dose-dependent changes in lipidomic profiles in mice exposed to PFUnDA were observed, with most profound changes seen at the highest exposure levels. Overall, PFUnDA exposure caused downregulation of phospholipids and triacylglycerols containing polyunsaturated fatty acids. Our results show that PFUnDA exposure in NOD mice alters lipid metabolism and is associated with pancreatic insulitis grade. Moreover, the results are in line with those reported in human studies, thus suggesting NOD mice as a suitable model to study the impacts of environmental chemicals on T1D.

20.
Toxicology ; 458: 152846, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34216698

RESUMO

The 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, is receiving increasing attention around the world, and has found its way to legislation, in particular in the European Union. This is aligned by continuing high-level efforts of the European Commission to support development and implementation of 3Rs methods. In this respect, the European project called "ONTOX: ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment" was recently initiated with the goal to provide a functional and sustainable solution for advancing human risk assessment of chemicals without the use of animals in line with the principles of 21st century toxicity testing and next generation risk assessment. ONTOX will deliver a generic strategy to create new approach methodologies (NAMs) in order to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment. For proof-of-concept purposes, focus is put on NAMs addressing adversities in the liver, kidneys and developing brain induced by a variety of chemicals. The NAMs each consist of a computational system based on artificial intelligence and are fed by biological, toxicological, chemical and kinetic data. Data are consecutively integrated in physiological maps, quantitative adverse outcome pathway networks and ontology frameworks. Supported by artificial intelligence, data gaps are identified and are filled by targeted in vitro and in silico testing. ONTOX is anticipated to have a deep and long-lasting impact at many levels, in particular by consolidating Europe's world-leading position regarding the development, exploitation, regulation and application of animal-free methods for human risk assessment of chemicals.


Assuntos
Inteligência Artificial , Ontologia Genética , Testes de Toxicidade , Alternativas aos Testes com Animais , Animais , Simulação por Computador , União Europeia , Humanos , Técnicas In Vitro , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...