Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 12(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34564234

RESUMO

Drosophila suzukii (Matsumura) is one of the most economically important pests of soft-skinned fruits worldwide. Repeated insecticide applications commonly used to prevent fruit infestations increase the risk of resistance development in D. suzukii. Assessment of resistance risk in D. suzukii using artificial selection can be valuable in developing proactive resistance management strategies to retain susceptibility in the field populations. Here, we artificially selected a colony of field-collected D. suzukii for resistance against spinosad and malathion. A quantitative genetic approach was then used to estimate realized heritability (h2) of resistance and predict the rates of resistance development. After 10 and 11 generations of selection, resistance to spinosad and malathion in D. suzukii females significantly increased by 7.55- and 2.23-fold, respectively. Based on the predicted rates of resistance development, assuming h2 = 0.14 (mean h2 of spinosad resistance in this study) and 90% of population was killed at each generation, 10-fold increase in LC50 of D. suzukii females would be expected in nine generations for spinosad. However, 10-fold increase in LC50 of D. suzukii females for malathion would be expected in 37 generations, assuming h2 = 0.08 (mean h2 of malathion resistance) and 90% of population was killed at each generation. These results indicate that the risk of resistance in D. suzukii populations exists against both spinosad and malathion. However, resistance would develop faster against spinosad as compared to malathion. Thus, resistance management strategies should be implemented proactively to maintain the effectiveness of these insecticides to control D. suzukii.

2.
PLoS Pathog ; 16(10): e1008919, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002079

RESUMO

Necrotrophic plant pathogen induces host reactive oxygen species (ROS) production, which leads to necrosis in the host, allowing the pathogen to absorb nutrients from the dead tissues. Sclerotinia sclerotiorum is a typical necrotrophic pathogen that causes Sclerotinia stem rot in more than 400 species, resulting in serious economic losses. Here, we found that three S. sclerotiorum genes involved in copper ion import/transport, SsCTR1, SsCCS and SsATX1, were significantly up-regulated during infection of Brassica oleracea. Function analysis revealed that these genes involved in fungal ROS detoxification and virulence. On the host side, four genes putatively involved in copper ion homeostasis, BolCCS, BolCCH, BolMT2A and BolDRT112, were significantly down-regulated in susceptible B. oleracea, but stably expressed in resistant B. oleracea during infection. Their homologs were found to promote resistance to S. sclerotiorum and increase antioxidant activity in Arabidopsis thaliana. Furthermore, copper concentration analysis indicated that copper flow from healthy area into the necrotic area during infection. A model was proposed that S. sclerotiorum utilizes host copper to detoxify ROS in its cells, whereas the resistant hosts may restrict the supply of essential copper nutrients to S. sclerotiorum by maintaining copper ion homeostasis during infection.


Assuntos
Ascomicetos/patogenicidade , Cobre/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/microbiologia , Análise de Sequência de RNA/métodos , Transcriptoma/fisiologia
3.
Pest Manag Sci ; 76(9): 2918-2924, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32356402

RESUMO

BACKGROUND: Preventative application of insecticides reduces marketable yield losses caused by Drosophila suzukii females that selectively lay eggs into ripe and ripening fruits. However, repeated applications of insecticides increase the risk of resistance development. It is therefore critical to test field-collected flies on-site to assess the level of sensitivity of D. suzukii to insecticides to monitor resistance, before it becomes a widespread issue. This requires that insecticide-treated vials be readily available to conduct bioassays. Thus, bioassays were conducted using malathion-, methomyl-, zeta-cypermethrin-, phosmet-, spinetoram- and spinosad-treated scintillation vials at 1 to 28 days after treatment to assess how residue age affects insecticide toxicity in scintillation vials. The impact of temperature on residue longevity was also assessed. RESULTS: Insecticide-treated vials stored for 28 days provided reliable estimates of susceptibility of D. suzukii to some of the tested insecticides. The toxicity of malathion remained consistently high throughout the experiment followed by methomyl. However, toxicities of zeta-cypermethrin, phosmet were variable whereas those of the spinosyns declined relatively quickly. Overall, storage temperature did not affect the residual toxicity of most of the tested insecticides except zeta-cypermethrin. CONCLUSION: These findings suggest that the toxicity of insecticide residues in treated vials remains active for ≤28 d for malathion and ≤21 and 28 days in methomyl-treated vials stored at 4 °C in Georgia and Michigan, respectively. However, the toxicities of spinosad, zeta-cypermethrin and phosmet were less consistent. Hence, vials treated with these insecticides should be freshly made to be effective for screening D. suzukii field populations for resistance. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Animais , Drosophila , Feminino , Controle de Insetos , Resistência a Inseticidas , Longevidade , Malation/toxicidade
4.
Phytopathology ; 109(4): 542-550, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30265202

RESUMO

White mold disease caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops. Here, we simultaneously assessed the transcriptome changes from lesions produced by S. sclerotiorum on disease-resistant (R) and -susceptible (S) B. oleracea pools bulked from a resistance-segregating F2 population. Virulence genes of S. sclerotiorum, including polygalacturonans, chitin synthase, secretory proteins, and oxalic acid biosynthesis, were significantly repressed in lesions of R B. oleracea at 12 h postinoculation (hpi) but exhibited similar expression patterns in R and S B. oleracea at 24 hpi. Resistant B. oleracea induced expression of receptors potentially to perceive Sclerotinia signals during 0 to 12 hpi and deployed complex strategies to suppress the pathogen establishment, including the quick accumulation of reactive oxygen species via activating Ca2+ signaling and suppressing pathogen oxalic acid generation in S. sclerotiorum. In addition, cell wall degradation was inhibited in the resistant B. oleracea potentially to prevent the expansion of Sclerotinia hyphae. The transcriptome changes in S. sclerotiorum and host revealed that resistant B. oleracea produces strong responses against S. sclerotiorum during early infection.


Assuntos
Ascomicetos , Brassica , Ascomicetos/patogenicidade , Brassica/microbiologia , Perfilação da Expressão Gênica , Doenças das Plantas , Transcriptoma
5.
PLoS One ; 8(6): e65946, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824315

RESUMO

DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Metilação de DNA , Hibridização Genética , Citosina/metabolismo
6.
Theor Appl Genet ; 126(2): 549-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23096003

RESUMO

The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393-400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2-28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.


Assuntos
Ascomicetos/fisiologia , Brassica/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Genoma de Planta , Doenças das Plantas/genética , Ascomicetos/patogenicidade , Brassica/imunologia , Brassica/microbiologia , Cromossomos de Plantas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Ligação Genética/genética , Genômica , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...