Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 9(5): 545-557, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289078

RESUMO

The use of splice-switching antisense therapy is highly promising, with a wealth of pre-clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre-clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Splicing de RNA , Animais , Vias de Administração de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/toxicidade , Splicing de RNA/efeitos dos fármacos
3.
Mol Cell Endocrinol ; 399: 296-310, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25224485

RESUMO

Heparan sulphate proteoglycans (HSPGs) exist in pancreatic beta cells, and HS seems to modulate important interactions in the islet microenvironment. However, the intra-islet structures of HS in health or altered glucose homeostasis are currently unknown. Here we show that distinct spatial distribution of HS motifs is present in islets in the adult, that intra-islet HS motifs are mostly conserved between rodents and humans, and that HS is abundant in glucagon producing islet alpha cells. In beta cells HS is characterised by 2-O, 6-O and N-sulphated moieties, whereas HS in alpha cells is N-acetylated, N-, and 2-O sulphated and low in 6-O groups. Differential expression of three HS modifying genes in alpha and beta cells was observed and may account for the different HS patterns. Furthermore, we found that FGF1 and FGF2 were present in alpha cells, whereas functional FGFRs exist in beta cells, but not in the alpha cell line aTC1-6, or in primary alpha cells in islets. FGF1 induced signalling was dependent on 2-O, and 6-O HS sulphation in beta cells, and HS desulphation reduced beta cell proliferation and potentiated oxidant induced apoptosis. In leptin resistant animals and in islets from streptozotocin treated rats there was a reduction in alpha cell HS expression. These data demonstrate the distinct HS expression patterns in alpha and beta islet cells and propose a novel role for alpha cells as a source of paracrine FGF ligands to neighbouring beta cells with specific cell-associated HS domains mediating the activation and diffusion of paracrine ligands.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células Secretoras de Glucagon/metabolismo , Heparitina Sulfato/metabolismo , Células Secretoras de Insulina/metabolismo , Comunicação Parácrina/fisiologia , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Secretoras de Glucagon/citologia , Heparitina Sulfato/genética , Células Secretoras de Insulina/citologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker
4.
Hum Gene Ther ; 25(7): 587-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24826963

RESUMO

Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne muscular dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase 1 clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exon-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Last, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Marcação de Genes/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos/uso terapêutico , Processamento Alternativo/genética , Animais , Ensaios Clínicos Fase I como Assunto , Distrofina/genética , Distrofina/metabolismo , Éxons , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(40): 16115-20, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959890

RESUMO

Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid.


Assuntos
Amiloide/metabolismo , Amiloidose/fisiopatologia , Inflamação/complicações , Proteína Amiloide A Sérica/metabolismo , Amiloidose/etiologia , Animais , Vermelho Congo , Primers do DNA/genética , Doxiciclina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
6.
Mol Ther ; 21(3): 602-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319054

RESUMO

Familial hypercholesterolemia (FH) is a genetic disorder characterized by extremely high levels of plasma low-density lipoprotein (LDL), due to defective LDL receptor-apolipoprotein B (APOB) binding. Current therapies such as statins or LDL apheresis for homozygous FH are insufficiently efficacious at lowering LDL cholesterol or are expensive. Treatments that target APOB100, the structural protein of LDL particles, are potential therapies for FH. We have developed a series of APOB-directed splice-switching oligonucleotides (SSOs) that cause the expression of APOB87, a truncated isoform of APOB100. APOB87, like similarly truncated isoforms expressed in patients with a different condition, familial hypobetalipoproteinemia, lowers LDL cholesterol by inhibiting very low-density lipoprotein (VLDL) assembly and increasing LDL clearance. We demonstrate that these "APO-skip " SSOs induce high levels of exon skipping and expression of the APOB87 isoform, but do not substantially inhibit APOB48 expression in cell lines. A single injection of an optimized APO-skip SSO into mice transgenic for human APOB resulted in abundant exon skipping that persists for >6 days. Weekly treatments generated a sustained reduction in LDL cholesterol levels of 34-51% in these mice, superior to pravastatin in a head-to-head comparison. These results validate APO-skip SSOs as a candidate therapy for FH.


Assuntos
Apolipoproteínas B/genética , LDL-Colesterol/sangue , Éxons , Oligonucleotídeos/genética , Precursores de RNA/genética , Splicing de RNA , Animais , Apolipoproteínas B/metabolismo , Células CACO-2 , Terapia Genética/métodos , Células Hep G2 , Homozigoto , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Lipoproteínas VLDL/antagonistas & inibidores , Lipoproteínas VLDL/sangue , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Oligonucleotídeos/metabolismo , Precursores de RNA/metabolismo , Coelhos , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Análise de Sequência de RNA
7.
Methods Mol Biol ; 867: 289-305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22454069

RESUMO

Exon-skipping antisense oligonucleotides (ASOs) can be used to knockdown the expression of an undesired gene or specific gene isoform. This chapter discusses the potential therapeutic applications of the technique and provides a sample protocol for inducing exon-skipping in Apolipoprotein B in vitro, as well as a protocol for quantifying exon-skipping using real-time PCR.


Assuntos
Apolipoproteínas B/genética , Éxons , Técnicas de Silenciamento de Genes , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Processamento Alternativo , Animais , Linhagem Celular , Colesterol/metabolismo , Ciclo-Oxigenase 2/genética , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , RNA/genética , RNA/isolamento & purificação , Receptor ErbB-2/genética , Transfecção
8.
J Gene Med ; 14(2): 109-19, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22228477

RESUMO

BACKGROUND: Single-stranded DNA oligonucleotides (ssODNs) can introduce small, specific sequence alterations into genomes. Potential applications include creating disease-associated mutations in cell lines or animals, functional studies of single nucleotide polymorphisms and, ultimately, clinical therapy by correcting genetic point mutations. Here, we report feasibility studies into realizing this potential by targeting a reporter gene, mutated enhanced green fluorescent protein (mEGFP). METHODS: Three mammalian cell lines, CHO, HEK293T and HepG2, expressing multiple copies of mEGFP were transfected with a 27-mer ssODN capable of restoring fluorescence. Successful cell correction was quantified by flow cytometry. RESULTS: Gene editing in each isogenic cell line, as measured by percentage of green cells, correlated tightly with target protein levels, and thus gene expression. In the total population, 2.5% of CHO-mEGFP cells were successfully edited, although, remarkably, in the highest decile producing mEGFP protein, over 20% of the cells had restored green fluorescence. Gene-edited clones initially selected for green fluorescence lost EGFP expression during cell passaging, which partly reflected G2-phase cycle arrest and perhaps eventual cell death. The major cause, however, was epigenetic down-regulation; incubation with sodium butyrate or 5-aza-2'-deoxycytidine reactivated fluorescent EGFP expression and hence established that the repaired genotype was stable. CONCLUSIONS: Our data establish that ssODN-mediated gene editing is underestimated in cultured mammalian cells expressing nonfluorescent mutated EGFP, because of variable expression of this mEGFP target gene in the cell population. This conclusion was endorsed by studies in HEK293T-mEGFP and HepG2-mEGFP cells. We infer that oligonucleotide-directed editing of endogenous genes is feasible, particularly for those that are transcriptionally active.


Assuntos
Engenharia Genética/métodos , Proteínas de Fluorescência Verde/metabolismo , Mutagênese/genética , Oligonucleotídeos/genética , Animais , Células CHO , Cricetinae , Cricetulus , Citometria de Fluxo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células Hep G2 , Humanos , Transfecção
9.
J Gene Med ; 11(3): 267-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19153972

RESUMO

BACKGROUND: Gene editing is potentially a powerful technology for introducing genetic changes by using short single-stranded DNA oligonucleotides (ssODNs). However, their efficiency is reduced by the mismatch repair system, especially MSH2, which may suppress gene editing, although findings vary depending on readout and type of oligonucleotide used. Additionally, successfully edited cells are reported to arrest at the S- or G2-phase. In the present study, we evaluate whether a novel ssODN design and down-regulation of MSH2 expression allows the isolation of replicating gene-edited cells. METHODS: Cultured Chinese hamster ovary cells expressing mutated enhanced green fluorescent protein were targeted with ssODNs of varying design, all capable of restoring fluorescence, which allows the monitoring of correction events by flow cytometry. Converted cells were isolated by cell sorting and grown to determine colony formation efficiencies. MSH2 expression was suppressed with small interfering RNA and the cell cycle distribution of cells transfected with ssODN was quantified by flow cytometry, following propidium iodide or DRAQ5 staining. RESULTS: Although efficiency was higher using ssODN end-protected with phosphorothioate, the potential of edited cells to form colonies was lower than those targeted with unmodified ssODN. We established that ssODN transfection itself perturbs the cell cycle and that MSH2 gene silencing increases correction efficiency. In both cases, however, the effect was dependent on the positioning of the protected nucleotides. Importantly, when internally protected ssODN was used in combination with MSH2 suppression, a higher proportion of G1-phase corrected cells was observed 48-64 h after transfection. CONCLUSIONS: Use of internally protected ssODN and downregulating cellular MSH2 activity may facilitate isolation of viable, actively replicating gene-edited cells.


Assuntos
Replicação do DNA , DNA de Cadeia Simples/genética , Inativação Gênica , Marcação de Genes , Proteína 2 Homóloga a MutS/genética , Oligonucleotídeos/genética , Animais , Sequência de Bases , Células CHO , Ciclo Celular/fisiologia , Cricetinae , Cricetulus , Reparo de Erro de Pareamento de DNA , Marcação de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção
10.
FEBS Lett ; 579(12): 2589-96, 2005 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-15862295

RESUMO

The polymorphism at residue 129 of the human PRNP gene modulates disease susceptibility and the clinico-pathological phenotypes in human transmissible spongiform encephalopathies. The molecular mechanisms by which the effect of this polymorphism are mediated remain unclear. It has been shown that the folding, dynamics and stability of the physiological, alpha-helix-rich form of recombinant PrP are not affected by codon 129 polymorphism. Consistent with this, we have recently shown that the kinetics of amyloid formation do not differ between protein containing methionine at codon 129 and valine at codon 129 when the reaction is initiated from the alpha-monomeric PrP(C)-like state. In contrast, we have shown that the misfolding pathway leading to the formation of beta-sheet-rich, soluble oligomer was favoured by the presence of methionine, compared with valine, at position 129. In the present work, we examine the effect of this polymorphism on the kinetics of an alternative misfolding pathway, that of amyloid formation using partially folded PrP allelomorphs. We show that the valine 129 allelomorph forms amyloids with a considerably shorter lag phase than the methionine 129 allelomorph both under spontaneous conditions and when seeded with pre-formed amyloid fibres. Taken together, our studies demonstrate that the effect of the codon 129 polymorphism depends on the specific misfolding pathway and on the initial conformation of the protein. The inverse propensities of the two allelomorphs to misfold in vitro through the alternative oligomeric and amyloidogenic pathways could explain some aspects of prion diseases linked to this polymorphism such as age at onset and disease incubation time.


Assuntos
Amiloide/biossíntese , Príons/química , Valina/química , Alelos , Amiloide/ultraestrutura , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Códon , Variação Genética , Humanos , Cinética , Metionina/química , Modelos Biológicos , Polimorfismo Genético , Príons/genética , Príons/isolamento & purificação , Príons/metabolismo , Príons/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Biol Chem ; 279(30): 31390-7, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15131108

RESUMO

The human PrP gene (PRNP) has two common alleles that encode either methionine or valine at codon 129. This polymorphism modulates disease susceptibility and phenotype of human transmissible spongiform encyphalopathies, but the molecular mechanism by which these effects are mediated remains unclear. Here, we compared the misfolding pathway that leads to the formation of beta-sheet-rich oligomeric isoforms of the methionine 129 variant of PrP to that of the valine 129 variant. We provide evidence for differences in the folding behavior between the two variants at the early stages of oligomer formation. We show that Met(129) has a higher propensity to form beta-sheet-rich oligomers, whereas Val(129) has a higher tendency to fold into alpha-helical-rich monomers. An equimolar mixture of both variants displayed an intermidate folding behavior. We show that the oligomers of both variants are initially a mixture of alpha- and beta-rich conformers that evolve with time to an increasingly homogeneous beta-rich form. This maturation process, which involves no further change in proteinase K resistance, occurs more rapidly in the Met(129) form than the Val(129) form. Although the involvement of such beta-rich oligomers in prion pathogenesis is speculative, the misfolding behavior could, in part, explain the higher susceptibility of individuals that are methionine homozygote to both sporadic and variant Creutzfeldt-Jakob disease.


Assuntos
Síndrome de Creutzfeldt-Jakob/etiologia , Variação Genética , Príons/química , Príons/genética , Alelos , Sequência de Aminoácidos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Endopeptidase K , Heterozigoto , Homozigoto , Humanos , Técnicas In Vitro , Metionina/química , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Valina/química
12.
J Virol ; 77(18): 9790-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941887

RESUMO

Coronavirus genomes are the largest known autonomously replicating RNAs with a size of ca. 30 kb. They are of positive polarity and are translated to produce the viral proteins needed for the assembly of an active replicase-transcriptase complex. In addition to replicating the genomic RNA, a key feature of this complex is a unique transcription process that results in the synthesis of a nested set of six to eight subgenomic mRNAs. These subgenomic mRNAs are produced in constant but nonequimolar amounts and, in general, each is translated to produce a single protein. To take advantage of these features, we have developed a multigene expression vector based on human coronavirus 229E. We have constructed a prototype RNA vector containing the 5' and 3' ends of the human coronavirus genome, the entire human coronavirus replicase gene, and three reporter genes (i.e., the chloramphenicol acetyltransferase [CAT] gene, the firefly luciferase [LUC] gene, and the green fluorescent protein [GFP] gene). Each reporter gene is located downstream of a human coronavirus transcription-associated sequence, which is required for the synthesis of individual subgenomic mRNAs. The transfection of vector RNA and human coronavirus nucleocapsid protein mRNA into BHK-21 cells resulted in the expression of the CAT, LUC, and GFP reporter proteins. Sequence analysis confirmed the synthesis of coronavirus-specific mRNAs encoding CAT, LUC, and GFP. In addition, we have shown that human coronavirus-based vector RNA can be packaged into virus-like particles that, in turn, can be used to transduce immature and mature human dendritic cells. In summary, we describe a new class of eukaryotic, multigene expression vectors that are based on the human coronavirus 229E and have the ability to transduce human dendritic cells.


Assuntos
Coronavirus/genética , Vetores Genéticos/genética , RNA Viral/genética , Transcrição Gênica , Animais , Cricetinae , Células Dendríticas/imunologia , Humanos , Imunoterapia , Família Multigênica , Transdução Genética , Transfecção , Montagem de Vírus
13.
J Biol Chem ; 278(41): 39697-705, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12902353

RESUMO

We have isolated artificial ligands or aptamers for infectious prions in order to investigate conformational aspects of prion pathogenesis. The aptamers are 2'-fluoro-modified RNA produced by in vitro selection from a large, randomized library. One of these ligands (aptamer SAF-93) had more than 10-fold higher affinity for PrPSc than for recombinant PrPC and inhibited the accumulation of PrPres in near physiological cell-free conversion assay. To understand the molecular basis of these properties and to distinguish specific from non-specific aptamer-PrP interactions, we studied deletion mutants of bovine PrP in denatured, alpha-helix-rich and beta-sheet-rich forms. We provide evidence that, like scrapie-associated fibrils (SAF), the beta-oligomer of PrP bound to SAF-93 with at least 10-fold higher affinity than did the alpha-form. This differential affinity could be explained by the existence of two binding sites within the PrP molecule. Site 1 lies within residues 23-110 in the unstructured N terminus and is a nonspecific RNA binding site found in all forms of PrP. The region between residue 90 and 110 forms a hinge region that is occluded in the alpha-rich form of PrP but becomes exposed in the denatured form of PrP. Site 2 lies in the region C-terminal of residue 110. This site is beta-sheet conformation-specific and is not recognized by control RNAs. Taken together, these data provide for the first time a specific ligand for a disease conformation-associated site in a region of PrP critical for conformational conversion. This aptamer could provide tools for the further analysis of the processes of PrP misfolding during prion disease and leads for the development of diagnostic and therapeutic approaches to TSEs.


Assuntos
Oligorribonucleotídeos/metabolismo , Doenças Priônicas/metabolismo , Príons/química , Príons/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Técnicas In Vitro , Ligantes , Oligorribonucleotídeos/genética , Doenças Priônicas/genética , Príons/genética , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...