Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(22): 15311-15321, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213346

RESUMO

The cinnamate functionalization of cellulose nanocrystals (Cin-CNCs) was investigated as a potential organic reinforcing and UV-shielding agent in polylactic acid (PLA) films. Acid hydrolysis was used to extract cellulose nanocrystals (CNCs) from pineapple leaves. Through esterification with cinnamoyl chloride, the cinnamate group was grafted onto the CNC surface and the resulting Cin-CNCs were incorporated in PLA films as reinforcing and UV-shielding agents. The PLA nanocomposite films were prepared using a solution-casting method and were tested for mechanical/thermal properties, gas permeability, and UV absorption. Importantly, the functionalization of cinnamate on CNCs substantially improved the dispersion of fillers on the PLA matrix. The PLA films containing 3 wt% Cin-CNCs exhibited high transparency and UV absorption in the visible region. On the other hand, PLA films filled with pristine CNCs did not exhibit any UV-shielding properties. The mechanical properties revealed that adding 3 wt% Cin-CNCs to PLA increased its tensile strength and Young's modulus by 70% and 37%, respectively, compared to neat PLA. In addition, the incorporation of Cin-CNCs substantially improved water vapor and oxygen permeability. At 3 wt% Cin-CNC addition, the water vapor and oxygen permeability of PLA films were reduced by 54% and 55%, respectively. This study demonstrated the great potential in utilizing Cin-CNCs as effective gas barriers, dispersible nanoparticles, and UV-absorbing, nano-reinforcing agents in PLA films.

2.
Heliyon ; 7(6): e07176, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141934

RESUMO

A thorough study was undertaken of the synthesis of natural rubber-silica treated with bis-(3-triethoxysilylpropyl) tetrasulfane (NR/TSi) vulcanized using electron beam irradiation (EB) and sulfur by varying the EB dose. The surface treatment of silica was confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy images. Composites were cast and vulcanized in film and latex forms compared with sulfur vulcanization. Investigation covered the mechanical properties, thermal stability, swelling resistance, and degradation under heat and humidity testing of the NR/TSi composites. It was found that the TSi had great dispersal in the NR matrix. TSi in NR matrix had a positive effect on mechanical properties, swelling in water and toluene, and thermal stability. Increasing the radiation intensity up to 250 kGy led to superior mechanical properties but for further increase in the radiation intensity, the tensile strength dropped. Degradation under thermal and humidity testing showed that the un-vulcanized composite had higher physical degradation than the vulcanized samples. Therefore, NR/TSi vulcanized using 200 kGy EB vulcanized in latex form had the greatest mechanical properties for various applications without producing any residual vulcanizing agent.

3.
Chemosphere ; 266: 129000, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246698

RESUMO

Pineapple leaves were used as a natural fiber source to prepare various modified microcrystalline cellulose (MCC) samples as sorbents for H2S sorption. Pineapple leaf fibers were first extracted from pineapple leaves, followed by hydrolyzing to produce MCC before various modifications using primary amine (3-aminopropyltrimethoxysilane, APS), secondary amine (N-methyl-3-aminopropyltrimethoxysilane, MAPS), or tertiary amine (N,N-dimethyl-3-aminopropyltrimethoxysilane, DAPS). The characterization results proved that all the aminosilane groups were successfully grafted onto the MCC. In addition, the thermal stability and the porosity of the modified sorbents were enhanced relative to those of unmodified MCC. The H2S sorption studies of MCC modified with APS, MAPS, and DAPS at 0, 3, or 5%w/w showed that MCC-MAPS had better H2S sorption performance than MCC-APS and MCC-DAPS, respectively, when comparing the H2S sorption performance at the same loading level. The optimum H2S sorption performance of each aminosilane group was achieved from MCC-APS at 5%, MCC-MAPS at 3%, and MCC-DAPS at 5%. An additional study of H2S sorption of these three sorbents in the presence of CO2 showed that MCC-DAPS at 5% was the best sorbent for selective H2S removal. Our results indicated that MCC modified with the aminosilane groups, especially MAPS, were promising materials for H2S sorption, with potential application in gas separation.


Assuntos
Ananas , Folhas de Planta
4.
ACS Omega ; 5(10): 5285-5296, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201817

RESUMO

Since large amounts of pineapple leaves are abandoned after harvest in agricultural areas, the possibility of developing value-added products from them is of interest. In this work, cellulose fiber was extracted from pineapple leaves and modified with ethylenediaminetetraacetic acid (EDTA) and carboxymethyl (CM) groups to produce Cell-EDTA and Cell-CM, respectively, which were then used as heavy metal ion adsorbents. A solution of either lead ion (Pb2+) or cadmium ion (Cd2+) was used as wastewater for the purpose of studying adsorption efficiencies. The adsorption efficiencies of Cell-EDTA and Cell-CM were significantly higher than those of the unmodified cellulose in the pH range 1-7. Maximum adsorptions toward Pb2+ and Cd2+ were, for Cell-EDTA, 41.2 and 33.2 mg g-1, respectively, and, for Cell-CM, 63.4 and 23.0 mg g-1, respectively. The adsorption behaviors of Cell-CM for Pb2+ and Cd2+ fitted well with a pseudo-first-order model, but those of Cell-EDTA for Pb2+ and Cd2+ fitted well with a pseudo-second-order model. All of the adsorption behaviors could be described using the Langmuir adsorption isotherm. Desorption studies of Pb2+ and Cd2+ on both adsorbents using 1 M HCl suggested that regenerability of Cell-EDTA was, for both adsorbates, better than that of Cell-CM. Moreover, adsorption measurements in a mixture of Pb2+ and Cd2+ at various ratios showed that for both adsorbents the adsorption of Pb2+ was higher than that of Cd2+, while the adsorption selectivity for Pb2+ of Cell-CM was greater than that of Cell-EDTA. This study showed that the modified cellulosic adsorbents made from pineapple leaves were able to efficiently adsorb metal ions.

5.
Sci Rep ; 7(1): 1124, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442728

RESUMO

Although Nickel-Cadmium (NiCd) and Nickel-metal hydride (NiMH) batteries have been widely used, their drawbacks including toxic Cd and expensive La alloy at the negative electrodes, low energy density (40-60 Wh/kg for NiCd and 140-300 Wh/L for NiMH), low power density (150 W/kg for NiCd and 1000 W/kg for NiMH), and low working potential (1.2 V) limit their applications. In this work, Cd and La alloy were replaced with N-doped reduced graphene oxide aerogel (N-rGOae) providing a hybrid energy storage (HES) having the battery and supercapacitor effects. The HES of Ni(OH)2-coated N-rGOae//N-rGOae provides 1.5 V, a specific energy of 146 Wh/kg, a maximum specific power of 7705 W/kg, and high capacity retention over 84.6% after 5000 cycles. The mass change at the positive electrode during charging/discharging is 8.5 µg cm-2 owing to the insertion/desertion of solvated OH- into the α-Ni(OH)2-coated N-rGOae. At the negative electrode, the mass change of the solvated K+, physically adsorbed/desorbed to the N-rGOae, is 7.5 µg cm-2. In situ X-ray absorption spectroscopy (XAS) shows highly reversible redox reaction of α-Ni(OH)2. The as-fabricated device without using toxic Cd and expensive La alloy has a potential as a candidate of NiCd and NiMH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...