Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 20: 15330338211039135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34632866

RESUMO

Purpose: Tumor treating fields (TTFields) is a novel antimitotic treatment that was first proven effective for glioblastoma multiforme, now with trials for several extracranial indications underway. Several studies focused on concurrent TTFields therapy with radiation in the same time period, but were not given simultaneously. This study evaluates the targeting accuracy of simultaneous radiation therapy while TTFields arrays are in place and powered on, ensuring that radiation does not interfere with TTFields and TTFields does not interfere with radiation. This is one of several options to enable TTFields to begin several weeks sooner, and opens potential for synergistic effects of combined therapy. Methods: TTFields arrays were attached to a warm saline water bath and salt was added until the TTFields generator reached the maximal 2000 mA peak-to-peak current. A ball cube phantom containing 2 orthogonal films surrounded by fiducials was placed in the water phantom, CT scanned, and a radiation treatment plan with 58 isocentric beams was created using a 3 cm circular collimator. Fiducial tracking was used to deliver radiation, the films were scanned, and end-to-end targeting error was measured with vendor-supplied software. In addition, radiation effects on electric fields generated by the TTFields system were assessed by examining logfiles generated from the field generator. Results: With TTFields arrays in place and powered on, the robotic radiosurgery system achieved a final targeting result of 0.47 mm, which was well within the submillimeter specification. No discernible effects on TTFields current output beyond 0.3% were observed in the logfiles when the radiation beam pulsed on and off. Conclusion: A robotic radiosurgery system was used to verify that radiation targeting was not adversely affected when the TTFields arrays were in place and the TTFields delivery device was powered on. In addition, this study verified that radiation delivered simultaneously with TTFields did not interfere with the generation of the electric fields.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioterapia/métodos , Terapia Combinada/métodos , Marcadores Fiduciais , Cabeça , Humanos , Mitose/efeitos da radiação , Imagens de Fantasmas , Hipofracionamento da Dose de Radiação , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador , Robótica
2.
Radiat Oncol ; 16(1): 98, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098991

RESUMO

BACKGROUND: Brachial plexopathy is a potentially serious complication from stereotactic body radiation therapy (SBRT) that has not been widely studied. Therefore, we compared datasets from two different institutions and generated a brachial plexus dose-response model, to quantify what dose constraints would be needed to minimize the effect on normal tissue while still enabling potent therapy for the tumor. METHODS: Two published SBRT datasets were pooled and modeled from patients at Indiana University and the Richard L. Roudebush Veterans Administration Medical Center from 1998 to 2007, as well as the Karolinska Institute from 2008 to 2013. All patients in both studies were treated with SBRT for apically located lung tumors localized superior to the aortic arch. Toxicities were graded according to Common Terminology Criteria for Adverse Events, and a probit dose response model was created with maximum likelihood parameter fitting. RESULTS: This analysis includes a total of 89 brachial plexus maximum point dose (Dmax) values from both institutions. Among the 14 patients who developed brachial plexopathy, the most common complications were grade 2, comprising 7 patients. The median follow-up was 30 months (range 6.1-72.2) in the Karolinska dataset, and the Indiana dataset had a median of 13 months (range 1-71). Both studies had a median range of 3 fractions, but in the Indiana dataset, 9 patients were treated in 4 fractions, and the paper did not differentiate between the two, so our analysis is considered to be in 3-4 fractions, one of the main limitations. The probit model showed that the risk of brachial plexopathy with Dmax of 26 Gy in 3-4 fractions is 10%, and 50% with Dmax of 70 Gy in 3-4 fractions. CONCLUSIONS: This analysis is only a preliminary result because more details are needed as well as additional comprehensive datasets from a much broader cross-section of clinical practices. When more institutions join the QUANTEC and HyTEC methodology of reporting sufficient details to enable data pooling, our field will finally reach an improved understanding of human dose tolerance.


Assuntos
Plexo Braquial/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Radiocirurgia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neuropatias do Plexo Braquial/etiologia , Neuropatias do Plexo Braquial/patologia , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...