Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(3): 365-372, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34747066

RESUMO

INTRODUCTION: Marine microalgae protein has better solubility and digestibility than other protein-based feeds. Apart from protein, high-value biomolecules have an immense potential to enhance the quality of feed, but knowledge about them is scarce. OBJECTIVE: Marine microalga Picochlorum sp. biomass molecular characterisation along with commonly used protein feed such as fishmeal and soymeal for potential feed ingredients. METHODOLOGY: Liquid chromatography coupled with mass spectrometry (LC-MS) was used for biomolecular characterisation. The correlation of biomolecules sets was evaluated using principal component analysis (PCA) and heatmap clustering. RESULTS: LC-MS identified 116 biomolecules cumulatively among microalga, fishmeal, and soymeal that includes fatty acids, acylglycerols, vitamins, sterols, pigments, nucleotides, unique amino acids, amines, sugars and miscellaneous. These 116 biomolecules were screened based on their functional importance as feed ingredients. Among the different sets of biomolecules, microalga contained a more diverse set of fatty acids, pigments, sterols, and vitamins than acylglycerols, unique amino acids, nucleotides, and sugars. Fishmeal contained a more diverse set of acylglycerols, unique amino acids, nucleotides, and amines, while soymeal contained the highest number of sugars and miscellaneous biomolecules. The PCA confirmed the significance level (P > 95%) and heatmap clustering showed the diversity and relatedness of biomolecules among the microalga, fishmeal, and soymeal. CONCLUSION: This study showed that the marine microalga Picochlorum sp. biomass has a rich source of biomolecules and could complement fishmeal or soymeal in feed and is also sustainable and economical as compared to fishmeal and soymeal.


Assuntos
Microalgas , Ração Animal/análise , Ácidos Graxos , Microalgas/metabolismo
2.
World J Microbiol Biotechnol ; 37(11): 182, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580746

RESUMO

Microalgae offer a promising source of biofuel and a wide array of high-value biomolecules. Large-scale cultivation of microalgae at low density poses a significant challenge in terms of water management. High-density microalgae cultivation, however, can be challenging due to biochemical changes associated with growth dynamics. Therefore, there is a need for a biomarker that can predict the optimum density for high biomass cultivation. A locally isolated microalga Cyanobacterium aponinum CCC734 was grown with optimized nitrogen and phosphorus in the ratio of 12:1 for sustained high biomass productivity. To understand density-associated bottlenecks secretome dynamics were monitored at biomass densities from 0.6 ± 0.1 to 7 ± 0.1 g/L (2 to 22 OD) in batch mode. Liquid chromatography coupled with mass spectrometry identified 880 exometabolites in the supernatant of C. aponinum CCC734. The PCA analysis showed similarity between exometabolite profiles at low (4 and 8 OD) and mid (12 and 16 OD), whereas distinctly separate at high biomass concentrations (20 and 22 OD). Ten exometabolites were selected based on their role in influencing growth and are specifically present at low, mid, and high biomass concentrations. Taking cues from secretome dynamics, 5.0 ± 0.5 g/L biomass concentration (16 OD) was optimal for C. aponinum CCC734 cultivation. Further validation was performed with a semi-turbidostat mode of cultivation for 29 days with a volumetric productivity of 1.0 ± 0.2 g/L/day. The secretomes-based footprinting tool is the first comprehensive growth study of exometabolite at the molecular level at variable biomass densities. This tool may be utilized in analyzing and directing microalgal cultivation strategies and reduction in overall operating costs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Secretoma/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Microalgas/citologia , Nitrogênio , Fósforo , Água
3.
Antonie Van Leeuwenhoek ; 103(5): 947-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532410

RESUMO

Cyanobacteria are a rich source of vast array of bioactive molecules including toxins with wide pharmaceutical importance. They show varied bioactivities like antitumor, antiviral, antibacterial, antifungal, antimalarial, antimycotics, antiproliferative, cytotoxicity, immunosuppressive agents and multi-drug resistance reversers. A number of techniques are now developed and standardized for the extraction, isolation, detection and purification of cyanobacterial bioactive molecules. Some of the compounds are showing interesting results and have successfully reached to phase II and phase III of clinical trials. These compounds also serve as lead compounds for the development of synthetic analogues with improved bioactivity. Cyanobacterial bioactive molecules hold a bright and promising future in scientific research and great opportunity for drug discovery. This review mainly focuses on anticancerous, antiviral and antibacterial compounds from cyanobacteria; their clinical status; extraction and detection techniques.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Cianobactérias/química , Descoberta de Drogas/métodos , Metaboloma , Cianobactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...