Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202400673, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38381534

RESUMO

A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.

2.
Org Lett ; 26(14): 2724-2728, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37219892

RESUMO

Herein, we present a novel C(sp3)-C(sp3) bond-forming protocol via the reductive coupling of abundant tertiary amides with organozinc reagents prepared in situ from their corresponding alkyl halides. Using a multistep fully automated flow protocol, this reaction could be used for both library synthesis and target molecule synthesis on the gram-scale starting from bench-stable reagents. Additionally, excellent chemoselectivity and functional group tolerance make it ideal for late-stage diversification of druglike molecules.

3.
Angew Chem Int Ed Engl ; 63(5): e202315401, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055190

RESUMO

The organocatalytic enolization of 2-arylacetamides, followed by an enantioselective intramolecular conjugate addition to tethered 2,5-cyclohexadienones, yielding 3D fused N-heterocycles, is described. The transformation represents the first strong activating group-free activation of carboxamides via α-C-H deprotonation in a metal-free, catalytic, and enantioselective reaction, and is achieved by employing a bifunctional iminophosphorane (BIMP) superbase.

4.
Angew Chem Int Ed Engl ; 63(2): e202314308, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37955594

RESUMO

Herein we report the first enantioselective total synthesis of (+)-incargranine A, in nine steps. The total synthesis was enabled by an enantioselective intramolecular organocatalysed desymmetrising Michael addition of a malonamate ester to a linked dienone substrate that established pivotal stereocentres with excellent enantio- and complete diastereoselectivity. Furthermore, a key hemiaminal intermediate was accessed by developing an iridium-catalysed reductive cyclisation, and the scope of this transformation was explored to produce a range of bicyclic hemiaminal motifs. Once installed, the hemiaminal motif was used to initiate a biomimetic cascade to access the natural product directly in a single step.

5.
Angew Chem Int Ed Engl ; 63(13): e202316021, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38143241

RESUMO

An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.

6.
J Am Chem Soc ; 145(40): 21745-21751, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756523

RESUMO

Reactions capable of transposing the oxidation levels of adjacent carbon atoms enable rapid and fundamental alteration of a molecule's reactivity. Herein, we report the 1,2-transposition of the carbon atom oxidation level in cyclic and acyclic tertiary amides, resulting in the one-pot synthesis of 1,2- and 1,3-oxygenated tertiary amines. This oxidation level transfer was facilitated by the careful orchestration of an iridium-catalyzed reduction with the functionalization of transiently formed enamine intermediates. A novel 1,2-carbonyl transposition is described, and the breadth of this redox transposition strategy has been further explored by the development of aminoalcohol and enaminone syntheses. The diverse ß-functionalized amine products were shown to be multifaceted and valuable synthetic intermediates, accessing challenging biologically relevant motifs.

7.
Nat Chem ; 15(5): 714-721, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127757

RESUMO

Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.

8.
J Am Chem Soc ; 145(23): 12771-12782, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253087

RESUMO

A bifunctional iminophosphorane (BIMP)-catalyzed, enantioselective intramolecular oxa-Michael reaction of alcohols to tethered, low electrophilicity Michael acceptors is described. Improved reactivity over previous reports (1 day vs 7 days), excellent yields (up to 99%), and enantiomeric ratios (up to 99.5:0.5 er) are demonstrated. The broad reaction scope, enabled by catalyst modularity and tunability, includes substituted tetrahydrofurans (THFs) and tetrahydropyrans (THPs), oxaspirocycles, sugar and natural product derivatives, dihydro-(iso)-benzofurans, and iso-chromans. A state-of-the-art computational study revealed that the enantioselectivity originates from the presence of several favorable intermolecular hydrogen bonds between the BIMP catalyst and the substrate that induce stabilizing electrostatic and orbital interactions. The newly developed catalytic enantioselective approach was carried out on multigram scale, and multiple Michael adducts were further derivatized to an array of useful building blocks, providing access to enantioenriched biologically active molecules and natural products.

9.
Angew Chem Int Ed Engl ; 62(21): e202303391, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929179

RESUMO

Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,ß-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including ß-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.

10.
J Am Chem Soc ; 145(9): 5422-5430, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820616

RESUMO

Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a ß-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.

11.
J Org Chem ; 87(18): 12498-12505, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36054913

RESUMO

A one-pot 1,3,4-oxadiazole synthesis-arylation strategy for accessing 2,5-disubstituted 1,3,4-oxadiazoles, from carboxylic acids, N-isocyaniminotriphenylphosphorane (NIITP), and aryl iodides, is reported. The reaction sequence, featuring a second stage copper-catalyzed 1,3,4-oxadiazole arylation, was found to tolerate (hetero)aryl, alkyl, and alkenyl carboxylic acids, and (hetero)aryl iodide coupling partners. The effectiveness of the two-stage strategy was exemplified by the late-stage functionalization of five carboxylic acid-containing APIs, and an extension to the synthesis of aminated 1,3,4-oxadiazoles using N-benzoyloxy amine coupling partners was also demonstrated.


Assuntos
Ácidos Carboxílicos , Oxidiazóis , Aminas , Cobre , Iodetos
12.
Chem Soc Rev ; 51(14): 5878-5929, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35770619

RESUMO

Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.


Assuntos
Produtos Biológicos , Éteres , Produtos Biológicos/química , Éter , Éteres/química , Oxirredução
13.
Org Lett ; 24(10): 2002-2007, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35258311

RESUMO

An iridium-catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska's complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS), and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines is described. A broad scope (46 examples), including N-aryl- and N-heteroaryl-substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram-scale synthesis, and common downstream transformations proved the potential synthetic relevance of this new methodology.


Assuntos
Irídio , Lactamas , Amidas , Catálise , Estrutura Molecular
14.
J Am Chem Soc ; 144(3): 1407-1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037758

RESUMO

The enantioselective total synthesis of madangamine E has been completed in 30 steps, enabled by a new catalytic and highly enantioselective desymmetrizing intramolecular Michael addition reaction of a prochiral ketone to a tethered ß,ß'-disubstituted nitroolefin. This key carbon-carbon bond forming reaction efficiently constructed a chiral bicyclic core in near-perfect enantio- and diastereo-selectivity, concurrently established three stereogenic centers, including a quaternary carbon, and proved highly scalable. Furthermore, the pathway and origins of enantioselectivity in this catalytic cyclization were probed using density functional theory (DFT) calculations, which revealed the crucial substrate/catalyst interactions in the enantio-determining step. Following construction of the bicyclic core, the total synthesis of madangamine E could be completed, with key steps including a mild one-pot oxidative lactamization of an amino alcohol, a two-step Z-selective olefination of a sterically hindered ketone, and ring-closing metatheses to install the two macrocyclic rings.

15.
J Am Chem Soc ; 144(2): 1006-1015, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990142

RESUMO

The first metal-free catalytic intermolecular enantioselective Michael addition to unactivated α,ß-unsaturated amides is described. Consistently high enantiomeric excesses and yields were obtained over a wide range of alkyl thiol pronucleophiles and electrophiles under mild reaction conditions, enabled by a novel squaramide-based bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0 mol %) were achieved on a decagram scale, demonstrating the scalability of the reaction. Computational analysis revealed the origin of the high enantiofacial selectivity via analysis of relevant transition structures and provided substantial support for specific noncovalent activation of the carbonyl group of the α,ß-unsaturated amide by the catalyst.

16.
Org Lett ; 23(21): 8209-8213, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34633203

RESUMO

A general synthesis of N-protected primary α-amino 1,3,4-oxadiazoles, from N-carbamoyl imines, N-isocyaniminotriphenylphosphorane (NIITP), and carboxylic acids, is described. Featuring an isocyanide addition reaction with N-carbamoyl imines, this efficient three-component Ugi-type reaction was found to be broad in scope with respect to imine, and carboxylic acid coupling partners. Furthermore, the versatility of this method was demonstrated by α-amino 1,2,4-triazole synthesis, the late-stage functionalization of seven drug molecules, and five divergent derivatizations of a primary α-amino 1,3,4-oxadiazole.

17.
Angew Chem Int Ed Engl ; 60(45): 24116-24123, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34449968

RESUMO

A reagent-controlled stereodivergent carbocyclisation of aryl aldimine-derived, photocatalytically generated, α-amino radicals possessing adjacent conjugated alkenes, affording either bicyclic or tetracyclic products, is described. Under net reductive conditions using commercial Hantzsch ester, the α-amino radical species underwent a single stereoselective cyclisation to give trans-configured amino-indane structures in good yield, whereas using a substituted Hantzsch ester as a milder reductant afforded cis-fused tetracyclic tetrahydroquinoline frameworks, resulting from two consecutive radical cyclisations. Judicious choice of the reaction conditions allowed libraries of both single and dual cyclisation products to be synthesised with high selectivity, notable predictability, and good-to-excellent yields. Computational analysis employing DFT revealed the reaction pathway and mechanistic rationale behind this finely balanced yet readily controlled photocatalytic system.

18.
J Am Chem Soc ; 143(29): 10828-10835, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254792

RESUMO

A new reductive strategy for the stereo- and regioselective synthesis of functionalized isoquinuclidines has been developed. Pivoting on the chemoselective iridium(I)-catalyzed reductive activation of ß,γ-unsaturated δ-lactams, the efficiently produced reactive dienamine intermediates readily undergo [4 + 2] cycloaddition reactions with a wide range of dienophiles, resulting in the formation of bridged bicyclic amine products. This new synthetic approach was extended to aliphatic starting materials, resulting in the efficient formation of cyclohexenamine products, and readily applied as the key step in the shortest (five-step) total synthesis of vinca alkaloid catharanthine to date, proceeding via its elusive biosynthetic precursor, dehydrosecodine.

19.
ACS Catal ; 11(12): 7489-7497, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34306810

RESUMO

An iridium-catalyzed reductive generation of both stabilized and unstabilized azomethine ylides and their application to functionalized pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions is described. Proceeding under mild reaction conditions from both amide and lactam precursors possessing a suitably positioned electron-withdrawing or a trimethylsilyl group, using 1 mol% Vaska's complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal reductant, a broad range of (un)stabilized azomethine ylides were accessible. Subsequent regio- and diastereoselective, inter- and intramolecular dipolar cycloaddition reactions with variously substituted electron-deficient alkenes enabled ready and efficient access to structurally complex pyrrolidine architectures. Density functional theory (DFT) calculations of the dipolar cycloaddition reactions uncovered an intimate balance between asynchronicity and interaction energies of transition structures, which ultimately control the unusual selectivities observed in certain cases.

20.
Angew Chem Int Ed Engl ; 60(36): 19725-19729, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191400

RESUMO

An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...