Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093786

RESUMO

In this study, we focused on understanding key storage traits of seeds from Macrozamia fraseri, an unusual though important species that is impacted by mining. To support current restoration activities, large amounts of seed from M. fraseri have been regularly collected and stored for up to 8 years under standard seed banking conditions (5°C and 20% relative humidity), though in situ recruitment from directly sown seed is poor. To investigate the underlying constraints to germination on demand, we set out to assess the viability of M. fraseri seeds that had been stored in a restoration seed bank from 6 to 66 months. Seed moisture content (MC) (fresh weight basis) was also determined for seeds with different storage histories to ascertain whether M. fraseri seeds display traits (i.e. high MC) that might suggest non-orthodox seed storage behaviour. The youngest seed accession (6 months old) was found to have a high MC (45.8 ± 5.4%-fresh weight basis), and >50% viability. In comparison, older (>30 months old) accessions were observed to have a marked reduction in both seed MC (10-35% MC) and viability (0-29.4%). While preliminary, we conclude that M. fraseri seeds appear to lose viability during conventional storage with younger accessions displaying both a higher seed MC and viability, compared to accessions stored for longer. Given the significance of these results, future research activities are recommended to better understand the interplay between seed MC and storage environment and how this relates to the seasonally dry Mediterranean climate where this species naturally occurs. As well, storage and propagation approaches are proposed to increase success when using M. fraseri for conservation and restorative activities.

2.
Ann Bot ; 129(6): 669-678, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35247265

RESUMO

BACKGROUND AND AIMS: Many terrestrial orchids have an obligate dependence on their mycorrhizal associations for nutrient acquisition, particularly during germination and early seedling growth. Though important in plant growth and development, phosphorus (P) nutrition studies in mixotrophic orchids have been limited to only a few orchid species and their fungal symbionts. For the first time, we demonstrate the role of a range of fungi in the acquisition and transport of inorganic P to four phylogenetically distinct green-leaved terrestrial orchid species (Diuris magnifica, Disa bracteata, Pterostylis sanguinea and Microtis media subsp. media) that naturally grow in P-impoverished soils. METHODS: Mycorrhizal P uptake and transfer to orchids was determined and visualized using agar microcosms with a diffusion barrier between P source (33P orthophosphate) and orchid seedlings, allowing extramatrical hyphae to reach the source. KEY RESULTS: Extramatrical hyphae of the studied orchid species were effective in capturing and transporting inorganic P into the plant. Following 7 d of exposure, between 0.5 % (D. bracteata) and 47 % (D. magnifica) of the P supplied was transported to the plants (at rates between 0.001 and 0.097 fmol h-1). This experimental approach was capable of distinguishing species based on their P-foraging efficiency, and highlighted the role that fungi play in P nutrition during early seedling development. CONCLUSIONS: Our study shows that orchids occurring naturally on P-impoverished soils can obtain significant amounts of inorganic P from their mycorrhizal partners, and significantly more uptake of P supplied than previously shown in other green-leaved orchids. These results provide support for differences in mycorrhiza-mediated P acquisition between orchid species and fungal symbionts in green-leaved orchids at the seedling stage. The plant-fungus combinations of this study also provide evidence for plant-mediated niche differentiation occurring, with ecological implications in P-limited systems.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Orchidaceae/microbiologia , Fósforo , Plântula/microbiologia , Solo , Simbiose
3.
Mol Ecol ; 31(7): 2172-2188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092102

RESUMO

Invertebrates are important for restoration processes as they are key drivers of many landscape-scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time-consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground-dwelling and airborne invertebrates across chronosequences of mine-site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground-dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Animais , Biodiversidade , DNA , Invertebrados/genética , Plantas/genética
4.
PLoS One ; 16(6): e0242035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106919

RESUMO

To achieve global ambitions in large scale ecological restoration, there is a need for approaches that improve the efficiency of seed-based interventions, particularly in overcoming the bottleneck in the transition from germination to seedling establishment. In this study, we tested a novel seed-based application of the plant stress modulator compound salicylic acid as a means to reduce seedling losses in the seed-to-seedling phase. Seed coating technology (encrusting) was developed as a precursor for optimising field sowing for three grass species commonly used in restoration programs, Austrostipa scabra, Microlaena stipoides, and Rytidosperma geniculatum. Salicylic acid (SA, 0.1mM) was delivered to seeds via imbibition and seed encrusting. The effects of SA on seed germination were examined under controlled water-limited conditions (drought resilience) in laboratory setting and on seed germination, seedling emergence, seedling growth and plant survival in field conditions. Salicylic acid did not impact germination under water stress in controlled laboratory conditions and did not affect seedling emergence in the field. However, seedling survival and growth were improved in plants grown from SA treated seeds (imbibed and encrusted) under field conditions. When SA delivery methods of imbibing and coating were compared, there was no significant difference in survival and growth, showing that seed coating has potential to deliver SA. Effect of intraspecific competition as a result of seedling density was also considered. Seedling survival over the dry summer season was more than double at low seedling density (40 plants/m2) compared to high seedling density (380 plants/m2). Overall, adjustment of seeding rate according to expected emergence combined with the use of salicylic acid via coating could improve seed use efficiency in seed-based restoration.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poaceae/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Sementes/efeitos dos fármacos , Germinação/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
5.
Sci Total Environ ; 788: 147622, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34034171

RESUMO

Mine tailings pose physical and chemical challenges for plant establishment. Our aim was to learn from natural processes in long-term soil and ecosystem development to use tailings as novel parent materials and pioneer ecological-engineering plant species to ameliorate extreme conditions of tailings, and facilitate the establishment of subsequent native plants. A glasshouse trial was conducted using magnetite tailings containing various amendments, investigating the potential of the nitrogen (N)-fixing, non-native pioneer species Lupinus angustifolius (Fabaceae), narrow-leaf lupin, as a potential eco-engineer to promote soil formation processes, and whether amendment type or the presence of pioneer vegetation improved the subsequent establishment and growth of 40 species of native plants. We found that L. angustifolius eco-engineered the mine tailings, by enhancing the N status of tailings and mobilising primary mineral P into organic P via a carboxylate-exudation strategy, thereby enabling subsequent growth of native species. The substantial increases of the soil organic P (from ca. 10 to 150 mg kg-1) pool and organo-bound Al minerals (from 0 to 2 mg kg-1) were particularly evident, indicating the initiation of pedogenesis in mine tailings. Our findings suggest that the annual legume L. angustifolius has eco-engineering potential on mine tailings through N-fixation and P-mobilisation, promoting the subsequent growth of native plants. We proposed Daviesia (Fabaceae) species as native species alternatives for the non-native L. angustifolius in the Western Australian context. Our findings are important for restoration practitioners tasked with mine site restoration in terms of screening pioneer eco-engineering plant species, where native plants are required to restore after mine operations.


Assuntos
Lupinus , Poluentes do Solo , Austrália , Ecossistema , Óxido Ferroso-Férrico , Folhas de Planta/química , Solo , Poluentes do Solo/análise
6.
Ecol Lett ; 23(12): 1733-1735, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32945104

RESUMO

Ant Forest, a mobile app developed by the monolithic Alibaba Group, is greening individuals' daily activities and transforming human capacity to reverse global environmental degradation. Over 500 million e-trees are being cultivated every day in China using Ant Forest, and over 122 million real trees have been planted over more than 112 000 ha of degraded land. Ant Forest showcases how internet technology innovation combined with digital financing and philanthropy is contributing to solving environmental issues while attracting and retaining customer loyalty. This powerful business model has the potential to spread to all manner of environmental outcomes.


Assuntos
Planetas , Árvores , China , Ecossistema , Florestas , Humanos
7.
Oecologia ; 193(4): 843-855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32816111

RESUMO

Plants that produce specialised cluster roots, which mobilise large quantities of poorly available nutrients such as phosphorus (P), can provide a benefit to neighbouring plants that produce roots in the cluster rhizosphere, as demonstrated previously in pot studies. To be effective, such roots must be present within the short time of peak cluster activity. We tested if this requirement is met, and quantified potential P benefits, in a hyperdiverse Mediterranean woodland of southwest Australia where cluster-rooted species are prominent. Using minirhizotrons, we monitored root dynamics during the wet season in the natural habitat. We found non-cluster roots intermingling with all 57 of the observed cluster roots of the studied tree species, Banksia attenuata. Almost all (95%) of these cases were observed in a high-moisture treatment simulating the 45-year average, but not present when we intercepted some of the rainfall. We estimate that cluster-root activity can increase P availability to intermingling roots to a theoretical maximum of 80% of total P in the studied soil. Due to their high P-remobilisation efficiency (89%), which results from P rapidly being relocated from cluster roots within the plant, senesced Banksia cluster roots are a negligible P source for other roots. We conclude that, rather than serving as a P source, it is the cluster-root activity, particularly the exudation of carboxylates, that may improve the coexistence of interacting species that are capable of root intermingling, thus potentially promoting species diversity in nutrient-poor habitats, and that this mechanism will be less effective in a drying climate.


Assuntos
Fósforo , Proteaceae , Austrália , Raízes de Plantas , Rizosfera , Solo
8.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708125

RESUMO

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


Assuntos
Planta Carnívora/anatomia & histologia , Planta Carnívora/genética , Cloroplastos/genética , Lamiales/genética , Tubérculos/anatomia & histologia , Estresse Fisiológico/fisiologia , Planta Carnívora/citologia , Planta Carnívora/ultraestrutura , Lamiales/anatomia & histologia , Lamiales/citologia , Lamiales/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , Tubérculos/citologia , Tubérculos/genética , Tubérculos/ultraestrutura , Amido/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
9.
Ann Bot ; 124(1): 65-76, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31329814

RESUMO

BACKGROUND AND AIMS: Little is known about the evolutionary and ecological drivers of carnivory in plants, particularly for those terrestrial species that do not occur in typical swamp or bog habitats. The Mediterranean endemic Drosophyllum lusitanicum (Drosophyllaceae) is one of very few terrestrial carnivorous plant species outside of Australia to occur in seasonally dry, fire-prone habitats, and is thus an ecological rarity. Here we assess the nutritional benefits of prey capture for D. lusitanicum under differing levels of soil fertility in situ. METHODS: We measured the total nitrogen and stable nitrogen and carbon isotope ratios of D. lusitanicum leaves, neighbouring non-carnivorous plant leaves, and groups of insect prey in three populations in southern Spain. We calculated trophic enrichment (ε15N) and estimated the proportion of prey-derived nitrogen (%Nprey) in D. lusitanicum leaves, and related these factors to soil chemistry parameters measured at each site. KEY RESULTS: In all three populations studied, D. lusitanicum plants were significantly isotopically enriched compared with neighbouring non-carnivorous plants. We estimated that D. lusitanicum gain ~36 %Nprey at the Puerto de Gáliz site, ~54 %Nprey at the Sierra Carbonera site and ~75 %Nprey at the Montera del Torero site. Enrichment in N isotope (ε15N) differed considerably among sites; however, it was not found to be significantly related to log10(soil N), log10(soil P) or log10(soil K). CONCLUSIONS: Drosophyllum lusitanicum individuals gain a significant nutritional benefit from captured prey in their natural habitat, exhibiting proportions of prey-derived nitrogen that are similar to those recorded for carnivorous plants occurring in more mesic environments. This study adds to the growing body of literature confirming that carnivory is a highly beneficial nutritional strategy not only in mesic habitats but also in seasonally dry environments, and provides insights to inform conservation strategies for D. lusitanicum in situ.


Assuntos
Carnivoridade , Áreas Alagadas , Animais , Austrália , Plantas , Espanha
10.
Genome Biol Evol ; 11(2): 472-485, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629170

RESUMO

The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.


Assuntos
Evolução Biológica , Droseraceae/genética , Genoma de Cloroplastos , Carnivoridade
11.
Ann Bot ; 123(1): 95-106, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052753

RESUMO

Background and Aims: Substantial evidence supports the hypothesis that morphophysiological dormancy (MPD) is the basal kind of seed dormancy in the angiosperms. However, only physiological dormancy (PD) is reported in seeds of the ANA-grade genus Nymphaea. The primary aim of this study was to determine the kind of dormancy in seeds of six species of Nymphaea from the wet-dry tropics of Australia. Methods: The effects of temperature, light and germination stimulants on germination were tested on multiple collections of seeds of N. immutabilis, N. lukei, N. macrosperma, N. ondinea, N. pubescens and N. violacea. Embryo growth prior to hypocotyl emergence was monitored. Key Results: Germination was generally <10 % after 28 d in control treatments. Germination percentage was highest at 30 or 35 °C for seeds exposed to light and treated with ethylene or in anoxic conditions in sealed vials of water, and it differed significantly between collections of N. lukei, N. macrosperma and N. violacea. Seeds of N. pubescens did not germinate under any of the conditions. Embryo growth (8-37 % in length) occurred before hypocotyl emergence (germination) in seeds of the five species that germinated. Conclusions: Fresh seeds were dormant, and the amount of pregermination embryo growth in seeds of N. lukei and N. immutabilis was relatively small, while in seeds of N. macrosperma, N. ondinea and N. violacea it was relatively large. Thus, seeds of N. lukei and N. immutabilis had PD and those of N. macrosperma, N. ondinea and N. violacea had MPD. Overall, we found that seeds in the most phylogenetically derived clades within Nymphaea have MPD, suggesting that PD is the most likely basal trait within the Nymphaeales. This study also highlights the broad range of dormancy types and germination strategies in the ANA-grade angiosperms.


Assuntos
Nymphaea/anatomia & histologia , Nymphaea/fisiologia , Dormência de Plantas , Austrália , Dormência de Plantas/fisiologia , Sementes/anatomia & histologia , Sementes/fisiologia , Especificidade da Espécie
13.
Sci Total Environ ; 651(Pt 1): 192-202, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227289

RESUMO

The present study aimed to characterize key physico-chemical and mineralogical attributes of magnetite iron (Fe) ore tailings to identify potential constraints limiting in situ soil formation and direct phytostabilization. Tailings of different age, together with undisturbed local native soils, were sampled from a magnetite mine in Western Australia. Tailings were extremely alkaline (pH > 9.0), with a lack of water stable aggregate and organic matter, and contained abundant primary minerals including mica (e.g., biotite), with low specific surface area (N2-BET around 1.2 m2 g-1). These conditions remained relatively unchanged after four years' aging under field conditions. Chemical extraction and spectroscopic analysis [e.g., X-ray diffraction (XRD) and synchrotron-based Fe K edge X-ray absorption fine structure spectroscopy (XAFS) analysis] revealed that the aging process decreased biotite-like minerals, but increased hematite and magnetite in the tailings. However, the aged tailings lacked goethite, a compound abundant in natural soils. Examination using backscattered-scanning electron microscope - energy dispersive X-ray spectrometry (BSE-SEM-EDS) revealed that aged tailings contained discrete sharp edged Fe-bearing minerals that did not physically integrate with other minerals (e.g., Si/Al bearing minerals). In contrast, Fe minerals in native soils appeared randomly distributed and closely amassed with Si/Al rich phyllosilicates, with highly eroded edges. The lack of labile organic matter and the persistence of alkaline-saline conditions may have significantly hindered the bioweathering of Fe-minerals and the biogenic formation of secondary Fe-minerals in tailings. However, there is signature that a native pioneer plant, Maireana brevifolia can facilitate the bioweathering of Fe-bearing minerals in tailings. We propose that eco-engineering inputs like organic carbon accumulation, together with the introduction of functional microbes and pioneer plants, should be adopted to accelerate bioweathering of Fe-bearing minerals as a priority for initiating in situ soil formation in the Fe ore tailings.

14.
Curr Biol ; 28(24): R1378-R1379, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562525

RESUMO

The global demand for restoration has increased orders of magnitude in the last decade, and hundreds of thousands of tonnes of native seed are required to feed this restoration engine [1] (Figure 1). But where are all the seeds required by restoration going to come from? Wild seed resources continue to be depleted by habitat loss, land degradation and climatic change, and over-collection of seed from wild populations threatens to erode these resources further. Ethical seed sourcing for restoration now represents a core issue in responsible restoration practice. Solutions include the introduction of regulatory frameworks controlling seed sourcing from wild populations, the development of seed farming capacity and advancement of seed enhancement technologies and precision delivery systems reducing seed wastage.


Assuntos
Agricultura/ética , Conservação dos Recursos Naturais/métodos , Sementes , Mudança Climática , Conservação dos Recursos Naturais/legislação & jurisprudência
15.
Ann Bot ; 122(6): 1061-1073, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30184161

RESUMO

Background and Aims: While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods: Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.


Assuntos
Abelhas/fisiologia , Mimetismo Biológico , Fabaceae/fisiologia , Orchidaceae/fisiologia , Polinização , Animais , Comportamento Alimentar , Comportamento Sexual Animal , Austrália Ocidental
16.
J Exp Biol ; 221(Pt 7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444841

RESUMO

We explore a recent, innovative variation of closed-system respirometry for terrestrial organisms, whereby oxygen partial pressure (PO2 ) is repeatedly measured fluorometrically in a constant-volume chamber over multiple time points. We outline a protocol that aligns this technology with the broader literature on aerial respirometry, including the calculations required to accurately convert O2 depletion to metabolic rate (MR). We identify a series of assumptions, and sources of error associated with this technique, including thresholds where O2 depletion becomes limiting, that impart errors to the calculation and interpretation of MR. Using these adjusted calculations, we found that the resting MR of five species of angiosperm seeds ranged from 0.011 to 0.640 ml g-1 h-1, consistent with published seed MR values. This innovative methodology greatly expands the lower size limit of terrestrial organisms that can be measured, and offers the potential for measuring MR changes over time as a result of physiological processes of the organism.


Assuntos
Metabolismo Basal , Sementes/metabolismo , Espirometria/métodos , Acacia/metabolismo , Austrália , Fluorescência , Senna/metabolismo
17.
Virus Res ; 244: 276-283, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180114

RESUMO

Terrestrial orchids represent a symbiotic union between plants and mycorrhizal fungi. This study describes the occurrence and nature of viruses associated with one population of wild Pterostylis sanguinea orchids, including their fungal symbionts, over two consecutive years. A generic sequencing approach, which combined dsRNA-enrichment from plant and mycelial tissues, random amplification and high throughput shotgun sequencing was used to identify novel viruses. The majority of the virus-like sequences represent partial genomes, and their identification is based solely on de novo assembly of sequencing data. In orchid leaf tissues we found three isolates of a novel totivirus and an unclassified virus; both resemble fungus-infecting viruses. Two isolates of Ceratobasidium sp that were isolated from orchid underground stems contained at least 20 viruses, 16 of which were previously described as alphapartitiviruses and betapartitiviruses. A novel hypovirus and a mitovirus were genetically distant from existing members of the genera and did not readily fit into recognised subgroups.


Assuntos
Micovírus/genética , Micorrizas/virologia , Orchidaceae/microbiologia , Vírus de RNA/genética , Simbiose/fisiologia , Totivirus/genética , Vírus não Classificados/genética , Austrália , Micovírus/classificação , Micovírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Folhas de Planta/microbiologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , Análise de Sequência de DNA , Totivirus/classificação , Totivirus/isolamento & purificação , Vírus não Classificados/classificação , Vírus não Classificados/isolamento & purificação
18.
Sci Rep ; 7(1): 14786, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093460

RESUMO

Identifying early life-stage transitions limiting seagrass recruitment could improve our ability to target demographic processes most responsive to management. Here we determine the magnitude of life-stage transitions along gradients in physical disturbance limiting seedling establishment for the marine angiosperm, Posidonia australis. Transition matrix models and sensitivity analyses were used to identify which transitions were critical for successful seedling establishment during the first year of seed recruitment and projection models were used to predict the most appropriate environments and seeding densities. Total survival probability of seedlings was low (0.001), however, transition probabilities between life-stages differed across the environmental gradients; seedling recruitment was affected by grazing and bioturbation prevailing during the first life-stage transition (1 month), and 4-6 months later during the third life-stage transition when establishing seedlings are physically removed by winter storms. Models projecting population growth from different starting seed densities showed that seeds could replace other more labour intensive and costly methods, such as transplanting adult shoots, if disturbances are moderated sufficiently and if large numbers of seed can be collected in sufficient quantity and delivered to restoration sites efficiently. These outcomes suggest that by improving management of early demographic processes, we could increase recruitment in restoration programs.


Assuntos
Alismatales/crescimento & desenvolvimento , Ecossistema , Modelos Biológicos , Plântula/crescimento & desenvolvimento
19.
AoB Plants ; 9(5): plx036, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28948008

RESUMO

Fire is a topical issue in the management of many ecosystems globally that face a drying climate. Understanding the role of fire in such ecosystems is critical to inform appropriate management practices, particularly in the case of rare and ecologically specialized species. The Mediterranean heathlands are highly fire-prone and occur in a biodiversity hotspot increasingly threatened by human activities, and determining the reproductive thresholds of at-risk heathland species is critical to ensuring the success of future conservation initiatives. This study examined the germination biology of the threatened carnivorous subshrub Drosophyllum lusitanicum, with specific focus on the role of fire-related cues (heat and smoke) in combination with seasonal temperatures and moisture conditions to determine how these factors regulate seed dormancy and germination. We found that D. lusitanicum produces water-permeable, physiologically dormant seeds with a fully developed, capitate embryo that when fresh (~1 month old) and without treatment germinate to 20-40 % within 4-8 weeks. Seeds possess a restricted thermal window (15-20 °C) for germination and a neutral photoblastic response. Seed dormancy was overcome through precision nicking of the seed coat (>90 % germination) or by short exposure to dry heat (80 or 100 °C) for 5-30 min (60-100 % germination). We propose seedling emergence from the soil seed bank may be cued by the passage of fire, or by soil disturbance from the movement and browsing of animals. Long-term population viability is likely to be contingent upon appropriate management of the persistent soil seed bank, as well as the adequate management of key ecological disturbances such as fire. Drosophyllum lusitanicum faces an increasingly bleak future in the absence of conservation and management initiatives aimed at reducing habitat fragmentation in heathlands and aligning fire management and livestock practices with biodiversity outcomes.

20.
Virology ; 510: 297-304, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797947

RESUMO

The bipartite alpha- and betapartitiviruses are recorded from a wide range of fungi and plants. Using a combination of dsRNA-enrichment, high-throughput shotgun sequencing and informatics, we report the occurrence of multiple new partitiviruses associated with mycorrhizal Ceratobasidium fungi, themselves symbiotically associated with a small wild population of Pterostylis sanguinea orchids in Australia, over two consecutive years. Twenty-one partial or near-complete sequences representing 16 definitive alpha- and betapartitivirus species, and further possible species, were detected from two fungal isolates. The majority of partitiviruses occurred in fungal isolates from both years. Two of the partitiviruses represent phylogenetically divergent forms of Alphapartitivirus, suggesting that they may have evolved under long geographical isolation there. We address the challenge of pairing the two genomic segments of partitiviruses to identify species when multiple partitiviruses co-infect a single host.


Assuntos
Basidiomycota/virologia , Micovírus/classificação , Micovírus/isolamento & purificação , Orchidaceae/microbiologia , Filogenia , Austrália , Biologia Computacional , Micovírus/genética , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Longitudinais , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...