Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328253

RESUMO

Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that can protect from long-lasting effects of ELA are poorly understood. Serotonin 1A (5HT 1A ) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but if 5HT 1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT 1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10. We then tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In ELA-exposed females, adult swim stress exposure increased passive coping and despair-like behavior, corticosterone levels at baseline and after stress, and neuronal activity and corticotropin releasing hormone levels in the paraventricular nucleus of the hypothalamus. ELA also reduced neurogenesis and increased microglia activation in the ventral dentate gyrus (DG) of the hippocampus - an important mediator of individual differences in stress susceptibility. These effects of ELA were specific to females, but not males, and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal 5HT 1A autoreceptor knockdown prevented ELA effects on stress reactivity and on neurogenesis and neuroinflammation in the DG, indicating that reducing 5HT 1A autoreceptors confers resilience to ELA. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in stress reactivity and ventral DG function across development, and identify 5HT 1A autoreceptors as potential targets to prevent these persistent effects of ELA.

2.
Biol Psychiatry ; 95(8): 800-809, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37863245

RESUMO

BACKGROUND: Hyperactivity of granule cells in the ventral dentate gyrus (vDG) promotes vulnerability to chronic stress. However, which receptors in the vDG could be targeted to inhibit this hyperactivity and confer stress resilience is not known. The serotonin 1A receptor (5-HT1AR) is a Gi protein-coupled inhibitory receptor that has been implicated in stress adaptation, anxiety, depression, and antidepressant responses. 5-HT1ARs are highly expressed in the DG, but their potential to promote stress resilience by regulating granule cell activity has never been examined. METHODS: We exposed male and female mice expressing 5-HT1ARs only in DG granule cells to 10 days of chronic social defeat stress (CSDS) and treated them with the 5-HT1AR agonist 8-OH-DPAT every day 30 minutes before each defeat throughout the CSDS paradigm. We then used whole-cell current clamp recordings, immunohistochemistry for the immediate early gene cFos, corticosterone immunoassays, and behavioral testing to determine how activating 5-HT1ARs on granule cells affects DG activity, neuroendocrine stress responses, and avoidance behavior. RESULTS: We found that activating 5-HT1ARs hyperpolarized DG granule cells and reduced cFos+ granule cells in the vDG following CSDS, indicating that 5-HT1AR activation rescued stress-induced vDG hyperactivity. Moreover, 5-HT1AR activation dampened corticosterone responses to CSDS and prevented the development of stress-induced avoidance in the social interaction test and in the open field test. CONCLUSIONS: Our findings show that activating 5-HT1ARs on DG granule cells can prevent stress-induced neuronal hyperactivity of the vDG and confer resilience to chronic stress.


Assuntos
Resiliência Psicológica , Serotonina , Camundongos , Masculino , Feminino , Animais , Receptor 5-HT1A de Serotonina , Corticosterona , Giro Denteado , Estresse Psicológico
3.
Neuropsychopharmacology ; 46(5): 882-890, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32919399

RESUMO

In the United States, ~1.4 million individuals identify as transgender. Many transgender adolescents experience gender dysphoria related to incongruence between their gender identity and sex assigned at birth. This dysphoria may worsen as puberty progresses. Puberty suppression by gonadotropin-releasing hormone agonists (GnRHa), such as leuprolide, can help alleviate gender dysphoria and provide additional time before irreversible changes in secondary sex characteristics may be initiated through feminizing or masculinizing hormone therapy congruent with the adolescent's gender experience. However, the effects of GnRH agonists on brain function and mental health are not well understood. Here, we investigated the effects of leuprolide on reproductive function, social and affective behavior, cognition, and brain activity in a rodent model. Six-week-old male and female C57BL/6J mice were injected daily with saline or leuprolide (20 µg) for 6 weeks and tested in several behavioral assays. We found that leuprolide increases hyperlocomotion, changes social preference, and increases neuroendocrine stress responses in male mice, while the same treatment increases hyponeophagia and despair-like behavior in females. Neuronal hyperactivity was found in the dentate gyrus (DG) of leuprolide-treated females, but not males, consistent with the elevation in hyponeophagia and despair-like behavior in females. These data show for the first time that GnRH agonist treatment after puberty onset exerts sex-specific effects on social- and affective behavior, stress regulation, and neural activity. Investigating the behavioral and neurobiological effects of GnRH agonists in mice will be important to better guide the investigation of potential consequences of this treatment for youth experiencing gender dysphoria.


Assuntos
Pessoas Transgênero , Adolescente , Animais , Feminino , Identidade de Gênero , Hormônio Liberador de Gonadotropina , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Puberdade , Estados Unidos
4.
Pharmacol Biochem Behav ; 143: 26-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850920

RESUMO

Caffeine consumption has been increasing rapidly in adolescents; however, most research on the behavioral effects of caffeine has been conducted in adults. Two experiments were conducted in which adolescent male and female rats were treated with a moderate dose of caffeine (0.25 g/l) in their drinking water beginning on P26-28. In the first experiment, animals were maintained on caffeinated drinking water or normal tap water for 14 days and were then tested for behavioral and striatal c-Fos response to amphetamine (1.5 mg/kg). In the second experiment, rats were maintained on caffeinated drinking water or normal tap water beginning on P28 and were tested for novel object recognition, anxiety in the light/dark test (L/D) and elevated plus maze (EPM), and depressive like behavior in the forced swim test (FST) beginning on the 14th day of caffeine exposure. Caffeine decreased amphetamine-induced rearing in males, but had no effect in females; however, this behavioral effect was not accompanied by changes in striatal c-Fos, which was increased by amphetamine but not altered by caffeine. No effects of caffeine were observed on novel object recognition or elevated plus maze behavior. However, in the L/D test, there was a sex by caffeine interaction on time spent in the light driven by a caffeine-induced increase in light time in the males but not the females. On the pretest day of the FST, sex by caffeine interactions were observed for swimming and struggling; caffeine decreased struggling behavior and increased swimming behavior in males and caffeine-treated females demonstrated significantly more struggling and significantly less swimming than caffeine-treated males. A similar pattern was observed on the test day in which caffeine decreased immobility overall and increased swimming. These data reveal sex dependent effects of caffeine on behavior in adolescent rats.


Assuntos
Anfetaminas/administração & dosagem , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Cafeína/administração & dosagem , Depressão/induzido quimicamente , Caracteres Sexuais , Anfetaminas/farmacologia , Animais , Cafeína/farmacologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...