Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(6): 901-913, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34617111

RESUMO

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors. Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy. We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay. Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and circular dichroism-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. In addition, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.


Assuntos
Encefalopatias , Epilepsia , Encefalopatias/metabolismo , Proteínas de Transporte/metabolismo , Epilepsia/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo
2.
Epilepsia ; 60(4): 689-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30866059

RESUMO

OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.


Assuntos
Epilepsia/genética , Comorbidade , Variações do Número de Cópias de DNA , Epilepsia/complicações , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
3.
Ann Neurol ; 84(5): 788-795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Epilepsia Generalizada/genética , Feminino , Genótipo , Humanos , Masculino , Mutação , Fenótipo
5.
Mol Genet Genomic Med ; 4(5): 568-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27652284

RESUMO

BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE genes, we sequenced 26 known and 351 candidate genes for EE in 360 patients. Variants in 25 genes known to be involved in EE or related phenotypes were followed up in 41 patients. We prioritized the candidate genes, and followed up 31 variants in this prioritized subset of candidate genes. RESULTS: Twenty-nine genotypes in known genes for EE (19) or related diseases (10), dominant as well as recessive or X-linked, were classified as likely pathogenic variants. Among those, likely pathogenic de novo variants were found in EE genes that act dominantly, including the recently identified genes EEF1A2, KCNB1 and the X-linked gene IQSEC2. A de novo frameshift variant in candidate gene HNRNPU was the only de novo variant found among the followed-up candidate genes, and the patient's phenotype was similar to a few recent publications. CONCLUSION: Mutations in genes described in OMIM as, for example, intellectual disability gene can lead to phenotypes that get classified as EE in the clinic. We confirmed existing literature reports that de novo loss-of-function HNRNPUmutations lead to severe developmental delay and febrile seizures in the first year of life.

6.
Neurology ; 87(11): 1140-51, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27521439

RESUMO

OBJECTIVE: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations. METHODS: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected. Functional analysis of 4 selected mutations was performed using the Xenopus laevis oocyte expression system. RESULTS: The study included 16 novel probands and 3 additional family members with a disease-causing mutation in the GABRA1 gene. The phenotypic spectrum varied from unspecified epilepsy (1), juvenile myoclonic epilepsy (2), photosensitive idiopathic generalized epilepsy (1), and generalized epilepsy with febrile seizures plus (1) to severe epileptic encephalopathies (11). In the epileptic encephalopathy group, the patients had seizures beginning between the first day of life and 15 months, with a mean of 7 months. Predominant seizure types in all patients were tonic-clonic in 9 participants (56%) and myoclonic seizures in 5 (31%). EEG showed a generalized photoparoxysmal response in 6 patients (37%). Four selected mutations studied functionally revealed a loss of function, without a clear genotype-phenotype correlation. CONCLUSIONS: GABRA1 mutations make a significant contribution to the genetic etiology of both benign and severe epilepsy syndromes. Myoclonic and tonic-clonic seizures with pathologic response to photic stimulation are common and shared features in both mild and severe phenotypes.


Assuntos
Epilepsia/genética , Mutação , Receptores de GABA-A/genética , Adolescente , Adulto , Animais , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Oócitos , Fenótipo , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
7.
Brain ; 139(Pt 9): 2420-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27435091

RESUMO

SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136*) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843* and compound heterozygote p.Gln647Argfs*6/p.Ser1122Thrfs*3) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Monoéster Fosfórico Hidrolases/genética , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Exoma , Feminino , Humanos , Masculino , Linhagem , Fenótipo
8.
Mol Genet Genomic Med ; 4(4): 457-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27465585

RESUMO

BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

9.
EMBO Mol Med ; 7(12): 1580-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26613940

RESUMO

Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin-G375D was non-synaptically localized in neurons and acted dominant-negatively on the clustering of wild-type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin-G375D and the receptors, suggesting that Gly375 is essential for gephyrin-receptor complex formation. Surprisingly, gephyrin-G375D was also unable to synthesize MoCo and activate MoCo-dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Epilepsia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Coenzimas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Pteridinas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo
10.
Nat Genet ; 47(4): 393-399, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751627

RESUMO

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six isolated patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons.


Assuntos
Epilepsia/genética , Canal de Potássio Kv1.2/genética , Mutação , Espasmos Infantis/genética , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Linhagem , Adulto Jovem
11.
Neurology ; 84(5): 480-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25568300

RESUMO

OBJECTIVE: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. METHODS: We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies. In addition, we ascertained cases with SCN8A mutations from other centers. A detailed clinical history was obtained together with a review of EEG and imaging data. RESULTS: Seventeen patients with de novo heterozygous mutations of SCN8A were studied. Seizure onset occurred at a mean age of 5 months (range: 1 day to 18 months); in general, seizures were not triggered by fever. Fifteen of 17 patients had multiple seizure types including focal, tonic, clonic, myoclonic and absence seizures, and epileptic spasms; seizures were refractory to antiepileptic therapy. Development was normal in 12 patients and slowed after seizure onset, often with regression; 5 patients had delayed development from birth. All patients developed intellectual disability, ranging from mild to severe. Motor manifestations were prominent including hypotonia, dystonia, hyperreflexia, and ataxia. EEG findings comprised moderate to severe background slowing with focal or multifocal epileptiform discharges. CONCLUSION: SCN8A encephalopathy presents in infancy with multiple seizure types including focal seizures and spasms in some cases. Outcome is often poor and includes hypotonia and movement disorders. The majority of mutations arise de novo, although we observed a single case of somatic mosaicism in an unaffected parent.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Fenótipo , Adolescente , Encefalopatias/diagnóstico , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Seguimentos , Humanos , Lactente , Internacionalidade , Masculino
12.
Hum Mol Genet ; 24(8): 2218-27, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25552650

RESUMO

We report two siblings with infantile onset seizures, severe developmental delay and spastic paraplegia, in whom whole-genome sequencing revealed compound heterozygous mutations in the AP4S1 gene, encoding the σ subunit of the adaptor protein complex 4 (AP-4). The effect of the predicted loss-of-function variants (p.Gln46Profs*9 and p.Arg97*) was further investigated in a patient's fibroblast cell line. We show that the premature stop mutations in AP4S1 result in a reduction of all AP-4 subunits and loss of AP-4 complex assembly. Recruitment of the AP-4 accessory protein tepsin, to the membrane was also abolished. In retrospect, the clinical phenotype in the family is consistent with previous reports of the AP-4 deficiency syndrome. Our study reports the second family with mutations in AP4S1 and describes the first two patients with loss of AP4S1 and seizures. We further discuss seizure phenotypes in reported patients, highlighting that seizures are part of the clinical manifestation of the AP-4 deficiency syndrome. We also hypothesize that endosomal trafficking is a common theme between heritable spastic paraplegia and some inherited epilepsies.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Mutação , Convulsões Febris/genética , Convulsões Febris/fisiopatologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/fisiopatologia , Complexo 4 de Proteínas Adaptadoras/genética , Adolescente , Sequência de Bases , Criança , Desenvolvimento Infantil , Pré-Escolar , Códon sem Sentido/genética , Códon sem Sentido/metabolismo , Feminino , Genes Recessivos , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Convulsões Febris/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Adulto Jovem
13.
J Neurol Neurosurg Psychiatry ; 85(4): 462-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24101679

RESUMO

BACKGROUND: Mutations in the proline-rich transmembrane protein 2 (PRRT2) gene have been identified in patients with benign (familial) infantile convulsions (B(F)IC), infantile convulsions with choreoathetosis (ICCA) and paroxysmal dyskinesias (PDs). However it remains unknown whether PRRT2 mutations are causal in other epilepsy syndromes. After we discovered a PRRT2 mutation in a large family with ICCA containing one individual with febrile seizures (FS) and one individual with West syndrome, we analysed PRRT2 in a heterogeneous cohort of patients with different types of infantile epilepsy. METHODS: We screened a cohort of 460 patients with B(F)IC or ICCA, fever related seizures or infantile epileptic encephalopathies. All patients were tested for point mutations using direct sequencing. RESULTS: We identified heterozygous mutations in 16 individuals: 10 familial and 6 sporadic cases. All patients were diagnosed with B(F)IC, ICCA or PD. We were not able to detect mutations in any of the other epilepsy syndromes. Several mutation carriers had learning disabilities and/or impaired fine motor skills later in life. CONCLUSIONS: PRRT2 mutations do not seem to be involved in the aetiology of FS or infantile epileptic encephalopathies. Therefore B(F)IC, ICCA and PD remain the core phenotypes associated with PRRT2 mutations. The presence of learning disabilities or neuropsychiatric problems in several mutation carriers calls for additional clinical studies addressing this developmental aspect in more detail.


Assuntos
Epilepsia/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Mutação Puntual/genética , Epilepsia/complicações , Epilepsia/diagnóstico , Feminino , Humanos , Deficiências da Aprendizagem/complicações , Deficiências da Aprendizagem/genética , Masculino , Transtornos das Habilidades Motoras/complicações , Transtornos das Habilidades Motoras/genética , Linhagem , Fenótipo
14.
Am J Hum Genet ; 93(5): 967-75, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24207121

RESUMO

Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsias Mioclônicas/genética , Animais , Criança , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Estudos de Coortes , Epilepsias Mioclônicas/patologia , Exoma , Feminino , Técnicas de Silenciamento de Genes , Haploinsuficiência , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Larva/genética , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões Febris/genética , Convulsões Febris/patologia , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...