Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 357: 127093, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378280

RESUMO

This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with âˆ¼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to âˆ¼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.


Assuntos
Saccharum , Grão Comestível , Hidrólise , Oligossacarídeos , Vapor , Açúcares
2.
Enzyme Microb Technol ; 129: 109353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31307573

RESUMO

A three catalytic domain multi-enzyme; a CE1 ferulic acid esterase, a GH62 α-l-arabinofuranosidase and a GH10 ß-d-1,4-xylanase was identified in a metagenome obtained from wastewater treatment sludge. The capability of the CE1-GH62-GH10 multi-enzyme to degrade arabinoxylan was investigated to examine the hypothesis that CE1-GH62-GH10 would degrade arabinoxylan more efficiently than the corresponding equimolar mix of the individual enzymes. CE1-GH62-GH10 efficiently catalyzed the production of xylopyranose, xylobiose, xylotriose, arabinofuranose and ferulic acid (FA) when incubated with insoluble wheat arabinoxylan (WAX-I) (kcat = 20.8 ± 2.6 s-1). Surprisingly, in an equimolar mix of the individual enzymes a similar kcat towards WAX-I was observed (kcat = 17.3 ± 3.8 s-1). Similarly, when assayed on complex plant biomass the activity was comparable between CE1-GH62-GH10 and an equimolar mix of the individual enzymes. This suggests that from a hydrolytic point of view a CE1-GH62-GH10 multi-enzyme is not an advantage. Determination of the melting temperatures for CE1-GH62-GH10 (71.0 ± 0.05 °C) and CE1 (69.9 ± 0.02), GH62 (65.7 ± 0.06) and GH10 (71 ± 0.05 °C) indicates that CE1 and GH62 are less stable as single domain enzymes. This conclusion was corroborated by the findings that CE1 lost ˜50% activity within 2 h, while GH62 retained ˜50% activity after 24 h, whereas CE1-GH62-GH10 and GH10 retained ˜50% activity for 72 h. GH62-GH10, when appended to each other, displayed a higher specificity constant (kcat/Km = 0.3 s-1 mg-1 ml) than the individual GH10 (kcat/Km = 0.12 s-1 ± 0.02 mg-1 ml) indicating a synergistic action between the two. Surprisingly, CE1-GH62, displayed a 2-fold lower kcat towards WAX-I than GH62, which might be due to the presence of a putative carbohydrate binding module appended to CE1 at the N-terminal. Both CE1 and CE1-GH62 released insignificant amounts of FA from WAX-I, but FA was released from WAX-I when both CE1 and GH10 were present, which might be due to GH10 releasing soluble oligosaccharides that CE1 can utilize as substrate. CE1 also displayed activity towards solubilized 5-O-trans-feruloyl-α-l-Araf (kcat = 36.35 s-1). This suggests that CE1 preferably acts on soluble oligosaccharides.


Assuntos
Esterases/química , Glicosídeo Hidrolases/química , Xilanos/química , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Hidrólise , Cinética , Esgotos/análise , Especificidade por Substrato
3.
Biotechnol Bioeng ; 115(12): 2869-2880, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132790

RESUMO

Adsorption of cellulases onto lignin is considered a major factor in retarding enzymatic cellulose degradation of lignocellulosic biomass. However, the adsorption mechanisms and kinetics are not well understood for individual types of cellulases. This study examines the binding affinity, kinetics of adsorption, and competition of four monocomponent cellulases of Trichoderma reesei during adsorption onto lignin. TrCel7A, TrCel6A, TrCel7B, and TrCel5A were radiolabeled for adsorption experiments on lignin-rich residues (LRRs) isolated from hydrothermally pretreated spruce (L-HPS) and wheat straw (L-HPWS), respectively. On the basis of adsorption isotherms fitted to the Langmuir model, the ranking of binding affinities was TrCel5A > TrCel6A > TrCel7B > TrCel7A on both types of LRRs. The enzymes had a higher affinity to the L-HPS than to the L-HPWS. Adsorption experiments with dilution after 1 and 24 hr and kinetic modeling were performed to quantify any irreversible binding over time. Models with reversible binding parameters fitted well and can explain the results obtained. The adsorption constants obtained from the reversible models agreed with the fitted Langmuir isotherms and suggested that reversible adsorption-desorption existed at equilibrium. Competitive binding experiments showed that individual types of cellulases competed for binding sites on the lignin and the adsorption data fitted the Langmuir adsorption model. Overall, the data strongly indicate that the adsorption of cellulases onto lignin is reversible and the findings have implications for the development of more efficient cellulose degrading enzymes.


Assuntos
Biomassa , Celulases , Lignina , Adsorção , Celulases/química , Celulases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lignina/química , Lignina/metabolismo , Trichoderma/enzimologia
4.
Biotechnol Biofuels ; 11: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619081

RESUMO

BACKGROUND: Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. RESULTS: Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover (Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw (Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R0) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. CONCLUSIONS: The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

5.
Biotechnol Biofuels ; 10: 49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250817

RESUMO

BACKGROUND: Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understood. RESULTS: Potentially important lignocellulosic feedstocks for biorefining, corn stover (Zea mays subsp. mays L.), stalks of Miscanthus × giganteus, and wheat straw (Triticum aestivum L.) were systematically hydrothermally pretreated; each at three different severities of 3.65, 3.83, and 3.97, respectively, and the enzymatic digestibility was assessed. Pretreated samples of Miscanthus × giganteus stalks were the least digestible among the biomass feedstocks producing ~24 to 66.6% lower glucose yields than the other feedstocks depending on pretreatment severity and enzyme dosage. Bulk biomass composition analyses, 2D nuclear magnetic resonance, and comprehensive microarray polymer profiling were not able to explain the observed differences in recalcitrance among the pretreated feedstocks. However, methods characterizing physical and chemical features of the biomass surfaces, specifically contact angle measurements (wettability) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (surface biopolymer composition) produced data correlating pretreatment severity and enzymatic digestibility, and they also revealed differences that correlated to enzymatic glucose yield responses among the three different biomass types. CONCLUSION: The study revealed that to a large extent, factors related to physico-chemical surface properties, namely surface wettability as assessed by contact angle measurements and surface content of hemicellulose, lignin, and wax as assessed by ATR-FTIR rather than bulk biomass chemical composition correlated to the recalcitrance of the tested biomass types. The data provide new insight into how hydrothermal pretreatment severity affects surface properties of key Poaceae lignocellulosic biomass and may help design new approaches to overcome biomass recalcitrance.

6.
Adv Appl Microbiol ; 88: 103-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24767427

RESUMO

In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.


Assuntos
Biomassa , Celulases/fisiologia , Fungos/enzimologia , Adsorção , Basidiomycota/metabolismo , Carboidratos/química , Celulases/química , Celulose/metabolismo , Hidrólise , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...