Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 18: 1270-1277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225728

RESUMO

A series of N 6-substituted adenine-ferrocene conjugates was prepared and the reaction mechanism underlying the synthesis was explored. The SN2-like reaction between ferrocenoyl chloride and adenine anions is a regioselective process in which the product ratio (N7/N9-ferrocenoyl isomers) is governed by the steric property of the substituent at the N 6-position. Steric effects were evaluated by using Charton (empirical) and Sterimol (computational) parameters. The bulky substituents may shield the proximal N7 region of space, which prevents the approach of an electrophile towards the N7 atom. As a consequence, the formation of N7-isomer is a kinetically less feasible process, i.e., the corresponding transition state structure increases in relative energy (compared to the formation of the N9-isomer). In cases where the steric hindrance is negligible, the electronic effect of the N 6-substituent is prevailing. That was supported by calculations of Fukui functions and molecular orbital coefficients. Both descriptors indicated that the N7 atom was more nucleophilic than its N9-counterpart in all adenine anion derivatives. We demonstrated that selected substituents may shift the acylation of purines from a regioselective to a regiospecific mode.

2.
J Org Chem ; 84(19): 12471-12480, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31479271

RESUMO

In the reaction of purines with ferrocenoyl chloride in dimethylformamide (DMF), a regioselective acylation occurred. The two products have been isolated and, according to detailed NMR analysis, identified as N7- and N9-ferrocenoylated isomers. In a more polar solvent, for example, in dimethylsulfoxide (DMSO), the two isomers interconvert to each other. The N7/N9 isomerization was followed by 1H NMR spectroscopy, until dynamic equilibrium was reached. Both kinetics and thermodynamics of the transacylation process are governed by a C6-substituent on the purine ring (R = NH2, Me, NHBz, OBz). The observed rate constant for the N7/N9-isomerization in the adenine system (R = NH2) is kobs = 0.3668 h-1, whereas the corresponding process in the C6-benzyloxypurine is 56 times slower. By use of density functional theory calculations and molecular dynamics simulations, several reaction pathways were considered and explored. Only the reaction mechanism involving DMSO as a nucleophilic reactant is in harmony with the experimental kinetic data. The calculated barrier (ΔG⧧ = 107.9 kJ/mol; at the M06L/6-311+G(d,p)/SDD level of theory) for this SN2-like reaction in the adenine system agrees well with the experimental value of 102.7 kJ/mol. No isomerization was detected in other organic solvents, for example, acetonitrile, N,N-dimethylformamide, or acetone, which indicated the exceptional nucleophilicity of DMSO. Our results raise a warning when treating or dissolving acylated purines in DMSO as they are prone to isomerization. We observed that the N7/N9-group transfer was specific not only for the organometallic moiety only, but for other acyl groups in purines as well. The relevance of this isomerization may be expected for a series of nucleobases and heterocyclic systems in general.

3.
Int J Med Mushrooms ; 20(8): 797-808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30317955

RESUMO

Agaricus bisporus, also known as the white button mushroom or champignon, is the most cultivated mushroom species worldwide. In addition to its favorable nutrient profile, it contains a number of compounds with antioxidant, antibacterial, anti-inflammatory, antitumor, and immunomodulatory activities. Waste biomass is a secondary product obtained from A. bisporus during the harvesting stage. It is underused, although it could be a cheap source of polysaccharides and antioxidants for use in food and feed production, or a source of nutraceuticals and cosmeceuticals. In this study, waste biomass was used as raw material for extraction of crude polysaccharides. The mean amount of crude polysaccharides extracted was 106 g/kg dry weight debris-free mushroom waste biomass. The crude polysaccharides recovered contained 11.57% α-glucan and 16.37% ß-glucan. Total carbohydrates composed 44.18%. No significant differences were found in the Fourier transform infrared spectra, which confirmed the presence of protein, α-glucan, and ß-glucan in all samples; phenols were detected only in waste biomass and market-ready A. bisporus fruiting bodies. The total phenol content in methanol extracts of waste biomass and A. bisporus fruiting bodies was 6.16 and 11.25 mg gallic acid equivalents/g extract, respectively. Antioxidant capacities of methanol extracts from waste biomass, as determined by spectrophotometric techniques, were 22.67 µmol Trolox/g extract (ABTS radical scavenging), 51.77 µmol Fe2+/g extract (ferric-reducing antioxidant power), and 51.52% (DPPH radical scavenging). Although these values were lower than those for A. bisporus fruiting bodies, the waste biomass has great potential for use in food, feed, and other bioproducts of economic importance.


Assuntos
Agaricus/química , Antioxidantes/química , Polissacarídeos Fúngicos/química , Resíduos Sólidos/análise , Biomassa
4.
Food Technol Biotechnol ; 54(2): 236-242, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27904414

RESUMO

This study evaluates the feasibility of using near-infrared (NIR) spectroscopy as a rapid and environmentally friendly technique for validation and prediction of the total phenolic content (TPC) and antioxidant activity (AOA) indices (as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, inhibition time (IT) of the Briggs-Rauscher oscillating reaction, and relative antioxidant capacity (RAC)) of berry fruit extracts. The analysed berry samples originated from Croatia (blackberries, wild blueberries, raspberries, red currants and strawberries) and Bulgaria (wild blueberries, raspberries and strawberries). Principal component analysis and partial least squares (PLS) regression were used from the set of chemometric tools in distinguishing and validating the measured berry fruit extract. ANOVA and PCA showed no significant impact of the origin and freshness of the samples. PLS models were developed to validate the relationship of NIR spectra with TPC and AOA of berry fruits. Representativeness of the models was expressed with the R2 and the ratio of performance to deviation. Calculated R2 values were above 0.84 and the ratio of performance to deviation was between 1.8 and 3.1, indicating adequacy of the PLS models.

5.
Food Chem ; 167: 378-86, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25149001

RESUMO

Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.


Assuntos
Alginatos/química , Cafeína/química , Carragenina/química , Quitosana/química , Hidrogel de Polietilenoglicol-Dimetacrilato/análise , Pectinas/química , Psyllium/química , Cafeína/administração & dosagem , Química Farmacêutica , Ácido Glucurônico/química , Ácidos Hexurônicos/química
6.
J Agric Food Chem ; 53(12): 4836-42, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15941324

RESUMO

The possibility of proving the undeclared addition of pumpkin puree in apricot nectars and jams has been investigated by using the phenol compound fingerprint and sensory evaluation. The cheaper pumpkin admixtures in apricot nectars and jams could not be detected by the sensory evaluation, particularly if present in quantities of <15%. The lower admixtures of pumpkin puree in apricot nectars and jams could be detected by the presence of syringic acid, a phenolic compound characteristic of the investigated pumpkins (Cucurbita pepo cv. Gleisdorff and Table Gold, Cucurbita maxima cv. Turkinja, and Cucurbita moschata cv. Argenta). Syringic acid was isolated from pumpkin puree and determined by using HPLC with diode array detection. By using the phenolic profile, undeclared pumpkin admixture (> or =5%) in the apricot nectars and jams could be proven.


Assuntos
Bebidas/análise , Cucurbita/química , Contaminação de Alimentos/análise , Fenol/análise , Prunus/química , Cromatografia Líquida de Alta Pressão , Cor , Manipulação de Alimentos/métodos , Humanos , Olfato , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...