Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 954917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386638

RESUMO

Palm wine fermentation is a complex microbial process that evolves with tapping times. The dynamics in microbiota and metabolites throughout palm wine tapping days is still not established, which are critical for the distinctive characteristics of palm wine taste and quality, and thus the mastery of the daily quality fluctuation during tapping. We analyzed the changes in microbial community structure by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region, and metabolite profile changes using mass spectrometry in palm wine collected over 25-30 days tapping of ron (Borassus aethiopum) and oil palms (Elaeis guineensis) from Côte d'Ivoire. The stage-wise collected palm wine samples showed distinct changes in microbial diversity and pH, supporting microbial community dynamics during palm wine tapping. Results highlighted the dominance of Saccharomyces cerevisiae in early stages and the emergence of non-Saccharomyces yeasts, particularly Hanseniaspora spp. in the later stages of oil palm wine tapping, vice versa in the case of ron palm wine tapping, with a unique presence of Saccharomycodes in the later stages (15-30 days). Fructophilic lactic acid bacteria (FLAB), mainly Fructobacillus and Leuconostoc, encountered in both types of palm wine tapping showed a decline at later stages of oil palm wine tapping. In this type of palm wine, acetic acid bacteria with genera Acetobacter and Glucanoacetobacter, by surpassing Lactobacillus in the last stage become dominant, whereas Lactobacillus remained dominant in ron palm wine throughout tapping days. The decline in the relative abundance of gevotroline and essential amino acids during the later stages of palm wine tapping (15-25 days) supports the difference in the health benefits of the palm wine obtained from different days of tapping, indicating that early stages of tapping is more nutritional and healthy than the later stages. The microbial dynamics may be a potential indicator of metabolite changes during palm sap fermentation, thus contributing to establish particular features of palm wines in different stages of tapping. This understanding of microbial ecology and chemical composition changes during palm wine tapping can be used as biomarkers to assess palm wine's quality and help to design an optimum starter culture.

2.
Curr Microbiol ; 78(8): 3246-3257, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34232363

RESUMO

The high phenolic content of Palm Oil Mill Effluent (POME) constitutes an environmental concern. In this study, laccase producing microorganisms were isolated from POME samples collected in Côte d'Ivoire for their possible use in POME treatment. Strain showing the highest laccase activity was identified by ITS1-5.8S-ITS2 region sequencing as Trametes polyzona. A maximum laccase production (156.3 U/mL) was obtained after 10 days of incubation under shaking condition, at 37 °C, pH 4, with starch (1%), tryptone (0.3%) and 10 mM of guaiacol. The partially purified laccase of 31 kDa exhibited maximum activity at 50 °C and pH 4.5 with a Km for guaiacol and Vmax of 0.7 mM and 0.04 mM/min, respectively. Metals, SDS and EDTA did not inhibit his activity. Used as biotreatment agent, T. polyzona MPS1-3 reduced COD, total suspended solids, total solids and total phenolics by 16.03%, 70.15%, 38.9%, 50.84%, respectively, for sterilized POME and by 13.09%, 58.07%, 36.53%, 42.05% for unsterilized POME. These results showed the promising application of T. polyzona for bioremediation of phenolics compounds in wastewater and it potentially useful in several other biotechnological applications.


Assuntos
Lacase , Trametes , Resíduos Industriais/análise , Isoenzimas , Óleo de Palmeira , Óleos de Plantas , Polyporaceae
3.
Sci Rep ; 11(1): 13232, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168191

RESUMO

Palm Oil Mill Effluents (POME) are complex fermentative substrates which habour diverse native microbial contaminants. However, knowledge on the microbiota community shift caused by the anthropogenic effects of POME in the environment is up to date still to be extensively documented. In this study, the bacterial and archaeal communities of POME from two palm oil processing systems (artisanal and industrial) were investigated by Illumina MiSeq Platform. Despite the common characteristics of these wastewaters, we found that their microbial communities were significantly different with regard to their diversity and relative abundance of their different Amplicon Sequence Variants (ASV). Indeed, POME from industrial plants harboured as dominant phyla Firmicutes (46.24%), Bacteroidetes (34.19%), Proteobacteria (15.11%), with the particular presence of Spirochaetes, verrucomicrobia and Synergistetes, while those from artisanal production were colonized by Firmicutes (92.06%), Proteobacteria (4.21%) and Actinobacteria (2.09%). Furthermore, 43 AVSs of archaea were detected only in POME from industrial plants and assigned to Crenarchaeota, Diapherotrites, Euryarchaeota and Nanoarchaeaeota phyla, populated mainly by many methane-forming archaea. Definitively, the microbial community composition of POME from both type of processing was markedly different, showing that the history of these ecosystems and various processing conditions have a great impact on each microbial community structure and diversity. By improving knowledge about this microbiome, the results also provide insight into the potential microbial contaminants of soils and rivers receiving these wastewaters.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Resíduos Industriais , Microbiota/genética , Óleo de Palmeira/isolamento & purificação , RNA Ribossômico 16S/genética , Archaea/genética , Indústria Química , Côte d'Ivoire , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase
4.
Sci Rep ; 10(1): 1715, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015447

RESUMO

Palm wine, the most commonly consumed traditional alcoholic beverage in Western Africa, harbours a complex microbiota and metabolites, which plays a crucial role in the overall quality and value of the product. In the present study, a combined metagenomic and metabolomic approach was applied to describe the microbial community structure and metabolites profile of fermented saps from three palm species (Elaeis guineensis, Raphia hookeri, Borassus aethiopum) in Côte d'Ivoire. Lactobacillaceae (47%), Leuconostocaceae (16%) and Acetobacteriaceae (28%) were the most abundant bacteria and Saccharomyces cerevisiae (87%) the predominant yeasts in these beverages. The microbial community structure of Raphia wine was distinctly different from the others. Multivariate analysis based on the metabolites profile clearly separated the three palm wine types. The main differentiating metabolites were putatively identified as gevotroline hydrochloride, sesartemin and methylisocitrate in Elaeis wine; derivative of homoserine, mitoxantrone in Raphia wine; pyrimidine nucleotide sugars (UDP-D-galacturonate) and myo-Inositol derivatives in Borassus wine. The enriched presence of gevotroline (an antipsychotic agent) and mitoxantrone (an anticancer drug) in palm wine supports its therapeutic potential. This work provides a valuable insight into the microbiology and biochemistry of palm wines and a rationale for selecting functional microorganisms for potential biotechnology applications.


Assuntos
Acetobacteraceae/fisiologia , Arecaceae/fisiologia , Genótipo , Lactobacillaceae/fisiologia , Leuconostocaceae/fisiologia , Saccharomyces cerevisiae/fisiologia , Vinho/microbiologia , Biologia Computacional , Côte d'Ivoire , Fermentação , Metaboloma , Metabolômica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Ribossômico 16S/genética
5.
Int J Food Microbiol ; 297: 1-10, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30852361

RESUMO

In order to assess the genetic diversity and population structure of indigenous S. cerevisiae from Côte d'Ivoire, a total of 170 strains were isolated from four traditional alcoholic beverages through nine regions. Microsatellite analysis performed at 12 loci revealed that strains of palm oil and raffia wine were genetically related, unlike those of tchapalo and ron wine which formed two s from palm oil wine and raffia wine were clearly inbred. In comparison with the European, North American, Asian and others West African populations, Ivorian population was well defined, although most of these strains were admixed. Among these strains, only isolates from raffia wine appeared to have alleles in common to all populations.


Assuntos
Bebidas Alcoólicas/microbiologia , Variação Genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Arecaceae , Côte d'Ivoire , Repetições de Microssatélites/genética , Vinho/microbiologia
6.
Environ Technol ; 40(20): 2608-2619, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29493426

RESUMO

This study aimed to determine the effects of salinity on the biomass behavior and its diversity in activated sludge process (ASP) treating the table olive processing wastewater (TOPW), and to evaluate ASP performances under increased TOPW concentration feeding, the numerical abundance, diversity and activity of the biomass, removal efficiencies of chemical oxygen demand (COD), phenolic compounds, nitrogen and phosphorus were evaluated. Results showed that biomass growth is very high and became faster according to an increase in the percentage of TOPW feeding and reached 5.2 gMLVSS l-1. The specific oxygen uptake rate (SOUR) analysis revealed that salinity up to 10 g l-1 provides an increase in biomass activity. SOUR reached a maximum of 20.3 gO2 gMLVSS-1 h-1. The increasing percentages of TOPW induce actually an evolution of microorganism's biodiversity; the microorganism communities were characterized by the abundance of halotolerant, Pseudomonas and Yeast genus that became the most abundant in the bioreactor as adaptation response against salinity. Furthermore, COD, phenolic compounds, nitrogen and phosphorus removal efficiencies attained 92.3%, 84.5%, 80% and 60%, respectively. A satisfactory release of extracellular polymeric substances is found to occur in the reactor with regard to increased saline TOPW, providing significant removal efficiencies and best settling of sludge.


Assuntos
Olea , Esgotos , Biomassa , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Int J Syst Evol Microbiol ; 68(7): 2299-2305, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29781796

RESUMO

Analysis of yeasts isolated from various biotopes in French Guiana led to the identification of two strains isolated from flowers and designated CLIB 1634T and CLIB 1707T. Comparison of the D1/D2 domain of the large subunit (LSU D1/D2) rRNA gene sequences of CLIB 1634T and CLIB 1707T to those in the GenBank database revealed that these strains belong to the Starmerella clade. Strain CLIB 1634T was shown to diverge from the closely related Starmerella apicola type strain CBS 2868T with a sequence divergence of 1.34 and 1.30 %, in the LSU D1/D2 rRNA gene and internal transcribed spacer (ITS) sequences respectively. Strain CLIB 1634T and Candida apicola CBS 2868T diverged by 3.81 and 14.96 % at the level of the protein-coding gene partial sequences EF-1α and RPB2, respectively. CLIB 1707T was found to have sequence divergence of 3.88 and 9.16 % in the LSU D1/D2 rRNA gene and ITS, respectively, from that of the most closely related species Starmerella ratchasimensis type strain CBS 10611T. The species Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov. are proposed to accommodate strains CLIB 1634T (=CBS 15247T) and CLIB 1707T (=CBS 15257T), respectively.


Assuntos
Flores/microbiologia , Filogenia , Saccharomycetales/classificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Guiana Francesa , Genes Fúngicos , Técnicas de Tipagem Micológica , Fator 1 de Elongação de Peptídeos/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...