Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 151801, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683006

RESUMO

We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ(1232). We measure a flux-integrated cross section for neutrino-induced η production on argon of 3.22±0.84(stat)±0.86(syst) 10^{-41} cm^{2}/nucleon. By demonstrating the successful reconstruction of the two photons resulting from η production, this analysis enables a novel calibration technique for electromagnetic showers in GeV accelerator neutrino experiments.

2.
Phys Rev Lett ; 132(4): 041801, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335355

RESUMO

We present the first search for heavy neutral leptons (HNLs) decaying into νe^{+}e^{-} or νπ^{0} final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab's main injector corresponding to a total exposure of 7.01×10^{20} protons on target. We set upper limits at the 90% confidence level on the mixing parameter |U_{µ4}|^{2} in the mass ranges 10≤m_{HNL}≤150 MeV for the νe^{+}e^{-} channel and 150≤m_{HNL}≤245 MeV for the νπ^{0} channel, assuming |U_{e4}|^{2}=|U_{τ4}|^{2}=0. These limits represent the most stringent constraints in the mass range 35

3.
Phys Rev Lett ; 131(10): 101802, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739352

RESUMO

We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved.

4.
Phys Rev Lett ; 130(23): 231802, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354393

RESUMO

We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.9×10^{20} protons on target running in anti-neutrino mode. An automated selection is combined with hand scanning, with the former identifying five candidate Λ production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.0 events. Restricting the phase space to only include Λ baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.0_{-1.7}^{+2.2}×10^{-40} cm^{2}/Ar, where statistical and systematic uncertainties are combined.


Assuntos
Mésons , Prótons , Simulação por Computador , Método de Monte Carlo
5.
Phys Rev Lett ; 130(5): 051802, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800478

RESUMO

The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×10^{20} protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q^{2} (squared four-momentum transfer) and energy, in the range 1 GeV≤E_{ν}<6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs Q^{2}.

6.
Phys Rev Lett ; 129(20): 201801, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36461983

RESUMO

This Letter presents the results from the MiniBooNE experiment within a full "3+1" scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone and in combination with MicroBooNE electron-neutrino data. The best-fit parameters of the combined fit with the exclusive charged-current quasielastic analysis (inclusive analysis) are Δm^{2}=0.209 eV^{2}(0.033 eV^{2}), |U_{e4}|^{2}=0.016(0.500), |U_{µ4}|^{2}=0.500(0.500), and sin^{2}(2θ_{µe})=0.0316(1.0). Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a Δχ^{2}/d.o.f.=24.7/3(17.3/3), a 4.3σ(3.4σ) preference assuming the asymptotic approximation given by Wilks's theorem.

7.
Phys Rev Lett ; 127(20): 201801, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860065

RESUMO

This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×10^{20} protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of 121 of neutral-current candidates are observed at the far detector, compared to a prediction of 122±11(stat.)±15(syst.) assuming mixing only between three active flavors. No evidence for ν[over ¯]_{µ}→ν[over ¯]_{s} oscillation is observed. Interpreting this result within a 3+1 model, constraints are placed on the mixing angles θ_{24}<25° and θ_{34}<32° at the 90% C.L. for 0.05 eV^{2}≤Δm_{41}^{2}≤0.5 eV^{2}, the range of mass splittings that produces no significant oscillations at the near detector. These are the first 3+1 confidence limits set using long-baseline accelerator antineutrinos.

8.
Phys Rev Lett ; 123(15): 151803, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702305

RESUMO

The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{µ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{µ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{µ}→ν[over ¯]_{µ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.

9.
Phys Rev Lett ; 121(22): 221801, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547637

RESUMO

The MiniBooNE experiment at Fermilab reports results from an analysis of ν_{e} appearance data from 12.84×10^{20} protons on target in neutrino mode, an increase of approximately a factor of 2 over previously reported results. A ν_{e} charged-current quasielastic event excess of 381.2±85.2 events (4.5σ) is observed in the energy range 200

10.
Phys Rev Lett ; 120(14): 141802, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694148

RESUMO

We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K^{+}→µ^{+}ν_{µ}) at the NuMI beamline absorber. These signal ν_{µ}-carbon events are distinguished from primarily pion decay in flight ν_{µ} and ν[over ¯]_{µ} backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=E_{ν}-E_{µ}), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.

11.
Phys Rev Lett ; 118(22): 221803, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621993

RESUMO

The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01

12.
Phys Rev Lett ; 118(23): 231801, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644674

RESUMO

Results are reported from an improved measurement of ν_{µ}→ν_{e} transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10^{20} protons on target, 33 ν_{e} candidates are observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA ν_{µ} disappearance data and external constraints from reactor experiments on sin^{2}2θ_{13}, the hypothesis of inverted mass hierarchy with θ_{23} in the lower octant is disfavored at greater than 93% C.L. for all values of δ_{CP}.

13.
Phys Rev Lett ; 118(15): 151802, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452513

RESUMO

This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05×10^{20} protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal θ_{23} mixing (θ_{23}=π/4). Assuming the normal mass hierarchy, we find Δm_{32}^{2}=(2.67±0.11)×10^{-3} eV^{2} and sin^{2}θ_{23} at the two statistically degenerate values 0.404_{-0.022}^{+0.030} and 0.624_{-0.030}^{+0.022}, both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6σ significance.

14.
Phys Rev Lett ; 110(16): 161801, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679593

RESUMO

The MiniBooNE experiment at Fermilab reports results from an analysis of ν[over ¯](e) appearance data from 11.27×10(20) protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200

15.
Phys Rev Lett ; 109(14): 141802, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083237

RESUMO

This paper introduces an experimental probe of the sterile neutrino with a novel, high-intensity source of electron antineutrinos from the production and subsequent decay of 8Li. When paired with an existing ∼1 kton scintillator-based detector, this = 6.4 MeV source opens a wide range of possible searches for beyond standard model physics via studies of the inverse beta decay interaction ν(e) + p → e+ + n. In particular, the experimental design described here has unprecedented sensitivity to ν(e) disappearance at Δm2 ∼ 1 eV2 and features the ability to distinguish between the existence of zero, one, and two sterile neutrinos.

16.
Phys Rev Lett ; 108(13): 131801, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540693

RESUMO

The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.016(stat)±0.040(syst) was obtained in 101 days of running at the Chooz nuclear power plant in France, with two 4.25 GW(th) reactors. The results were obtained from a single 10 m(3) fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a nonzero value of the still unmeasured neutrino mixing parameter sin(2)2θ(13). Analyzing both the rate of the prompt positrons and their energy spectrum, we find sin(2)2θ(13)=0.086±0.041(stat)±0.030(syst), or, at 90% C.L., 0.017

17.
Phys Rev Lett ; 107(21): 212501, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181874

RESUMO

We report the observation of two-neutrino double-beta decay in (136)Xe with T(1/2) = 2.11 ± 0.04(stat) ± 0.21(syst) × 10(21) yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for (136)Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

18.
Phys Rev Lett ; 105(18): 181801, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231096

RESUMO

The MiniBooNE experiment at Fermilab reports results from a search for ¯ν_{µ}→¯ν_{e} oscillations, using a data sample corresponding to 5.66×10²° protons on target. An excess of 20.9±14.0 events is observed in the energy range 475

19.
Phys Rev Lett ; 103(11): 111801, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19792365

RESUMO

The MiniBooNE Collaboration reports initial results from a search for nu(mu)-->nu(e) oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39x10(20) protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200

20.
Phys Rev Lett ; 103(6): 061802, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792551

RESUMO

The MiniBooNE Collaboration reports a search for nu_{micro} and nu[over]_{micro} disappearance in the Deltam;{2} region of 0.5-40 eV;{2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu_{micro} and nu[over]_{micro} energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu[over]_{micro} disappearance probes a region below Deltam;{2} = 40 eV;{2} never explored before.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...