Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Eur J Neurosci ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626924

RESUMO

Musical engagement can be conceptualized through various activities, modes of listening and listener states. Recent research has reported that a state of focused engagement can be indexed by the inter-subject correlation (ISC) of audience responses to a shared naturalistic stimulus. While statistically significant ISC has been reported during music listening, we lack insight into the temporal dynamics of engagement over the course of musical works-such as those composed in the Western classical style-which involve the formulation of expectations that are realized or derailed at subsequent points of arrival. Here, we use the ISC of electroencephalographic (EEG) and continuous behavioural (CB) responses to investigate the time-varying dynamics of engagement with functional tonal music. From a sample of adult musicians who listened to a complete cello concerto movement, we found that ISC varied throughout the excerpt for both measures. In particular, significant EEG ISC was observed during periods of musical tension that built to climactic highpoints, while significant CB ISC corresponded more to declarative entrances and points of arrival. Moreover, we found that a control stimulus retaining envelope characteristics of the intact music, but little other temporal structure, also elicited significantly correlated EEG and CB responses, though to lesser extents than the original version. In sum, these findings shed light on the temporal dynamics of engagement during music listening and clarify specific aspects of musical engagement that may be indexed by each measure.

2.
PLoS One ; 18(6): e0287601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379305

RESUMO

The recent legalization of sports wagering in many regions of North America has renewed attention on the practice of sports betting. Although considerable effort has been previously devoted to the analysis of sportsbook odds setting and public betting trends, the principles governing optimal wagering have received less focus. Here the key decisions facing the sports bettor are cast in terms of the probability distribution of the outcome variable and the sportsbook's proposition. Knowledge of the median outcome is shown to be a sufficient condition for optimal prediction in a given match, but additional quantiles are necessary to optimally select the subset of matches to wager on (i.e., those in which one of the outcomes yields a positive expected profit). Upper and lower bounds on wagering accuracy are derived, and the conditions required for statistical estimators to attain the upper bound are provided. To relate the theory to a real-world betting market, an empirical analysis of over 5000 matches from the National Football League is conducted. It is found that the point spreads and totals proposed by sportsbooks capture 86% and 79% of the variability in the median outcome, respectively. The data suggests that, in most cases, a sportsbook bias of only a single point from the true median is sufficient to permit a positive expected profit. Collectively, these findings provide a statistical framework that may be utilized by the betting public to guide decision-making.


Assuntos
Futebol Americano , Jogo de Azar , Humanos , América do Norte
4.
Front Rehabil Sci ; 3: 931274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189059

RESUMO

Spinal traction is a physical intervention that provides constant or intermittent stretching axial force to the lumbar vertebrae to gradually distract spinal tissues into better alignment, reduce intervertebral disc (IVD) pressure, and manage lower back pain (LBP). However, such axial traction may change the normal lordotic curvature, and result in unwanted side effects and/or inefficient reduction of the IVD pressure. An alternative to axial traction has been recently tested, consisting of posteroanterior (PA) traction in supine posture, which was recently shown effective to increase the intervertebral space and lordotic angle using MRI. PA traction aims to maintain the lumbar lordosis curvature throughout the spinal traction therapy while reducing the intradiscal pressure. In this study, we developed finite element simulations of mechanical therapy produced by a commercial thermo-mechanical massage bed capable of spinal PA traction. The stress relief produced on the lumbar discs by the posteroanterior traction system was investigated on human subject models with different BMI (normal, overweight, moderate obese and extreme obese BMI cases). We predict typical traction levels lead to significant distraction stresses in the lumbar discs, thus producing a stress relief by reducing the compression stresses normally experienced by these tissues. Also, the stress relief experienced by the lumbar discs was effective in all BMI models, and it was found maximal in the normal BMI model. These results are consistent with prior observations of therapeutic benefits derived from spinal AP traction.

5.
Front Med Technol ; 4: 925554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774152

RESUMO

Automatic thermal and mechanical massage beds support self-managed treatment, including reduction of pain and stress, enhanced circulation, and improved mobility. As the devices become more sophisticated (increasing the degrees of freedom), it is essential to identify the settings that best target the desired tissue. To that end, we developed an MRI-derived model of the lower back and simulated the physiological effects of a commercial thermal-mechanical massage bed. Here we specifically estimated the tissue temperature and increased circulation under steady-state conditions for typical thermal actuator settings (i.e., 45-65°C). Energy transfer across nine tissues was simulated with finite element modeling (FEM) and the resulting heating was coupled to blood flow with an empirically-guided model of temperature-dependent circulation. Our findings indicate that thermal massage increases tissue temperature by 3-8°C and 1-3°C at depths of 2 and 3 cm, respectively. Importantly, due to the rapid (non-linear) increase of circulation with local temperature, this is expected to increase blood flow four-fold (4x) at depths occupied by deep tissue and muscle. These predictions are consistent with prior clinical observations of therapeutic benefits derived from spinal thermal massage.

6.
Brain Stimul ; 15(1): 233-243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990877

RESUMO

BACKGROUND: Owing to its high spatial resolution and penetration depth, transcranial focused ultrasound stimulation (tFUS) is one of the most promising approaches to non-invasive neuromodulation. Identifying the impact of endogenous neural activity on neuromodulation outcome is critical to harnessing the potential of tFUS. OBJECTIVE: Here we sought to identify the relationship between pre-stimulation neural activity and the neuronal response to tFUS. METHODS: We applied 3 min of continuous-wave tFUS to the hippocampal region of the rat while recording local field potentials (LFP) and multi-unit activity (MUA) from the target. We also tested the application of tFUS but with an air gap separating the transducer and the skull, as well as active stimulation of the contralateral olfactory bulb. RESULTS: We observed a modest but significant increase in firing rate during hippocampal tFUS, but not during stimulation of the olfactory bulb or when an air gap was present. Importantly, the observed firing rate increase was significantly modulated by the power of baseline oscillations in the LFP, with low levels of delta (1-3 Hz) and high levels of theta (4-10 Hz) and gamma (30-250 Hz) power producing significantly larger firing rate increases. Firing rate increases were also amplified by a factor of 7× when stimulation was applied during periods of frequent sharp-wave ripple (SWR) activity. CONCLUSION: Our findings suggest that baseline brain rhythms may effectively "gate" the response to tFUS.


Assuntos
Mapeamento Encefálico , Encéfalo , Animais , Encéfalo/fisiologia , Cabeça , Ratos , Transdutores
7.
Brain Stimul ; 15(1): 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34742994

RESUMO

BACKGROUND: Transcranial electrical stimulation (TES) efficiency is related to the electric field (EF) magnitude delivered on the target. Very few studies (n = 4) have estimated the in-vivo intracerebral electric fields in humans. They have relied mainly on electrocorticographic recordings, which require a craniotomy impacting EF distribution, and did not investigate deep brain structures. OBJECTIVE: To measure the electric field in deep brain structures during TES in humans in-vivo. Additionally, to investigate the effects of TES frequencies, intensities, and montages on the intracerebral EF. METHODS: Simultaneous bipolar transcranial alternating current stimulation and intracerebral recordings (SEEG) were performed in 8 drug-resistant epileptic patients. TES was applied using small high-definition (HD) electrodes. Seven frequencies, two intensities and 15 montages were applied on one, six and one patients, respectively. RESULTS: At 1 mA intensity, we found mean EF magnitudes of 0.21, 0.17 and 0.07 V·m-1 in the amygdala, hippocampus, and cingulate gyrus, respectively. An average of 0.14 ± 0.07 V·m-1 was measured in these deep brain structures. Mean EF magnitudes in these structures at 1Hz were 11% higher than at 300Hz (+0.03 V·m-1). The EF was correlated with the TES intensities. The TES montages that yielded the maximum EF in the amygdalae were T7-T8 and in the cingulate gyri were C3-FT10 and T7-C4. CONCLUSION: TES at low intensities and with small HD electrodes can generate an EF in deep brain structures, irrespective of stimulation frequency. EF magnitude is correlated to the stimulation intensity and depends upon the stimulation montage.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Estimulação Elétrica , Eletricidade , Eletrodos , Hipocampo , Humanos
8.
Front Neurosci ; 15: 702067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955706

RESUMO

Musical minimalism utilizes the temporal manipulation of restricted collections of rhythmic, melodic, and/or harmonic materials. One example, Steve Reich's Piano Phase, offers listeners readily audible formal structure with unpredictable events at the local level. For example, pattern recurrences may generate strong expectations which are violated by small temporal and pitch deviations. A hyper-detailed listening strategy prompted by these minute deviations stands in contrast to the type of listening engagement typically cultivated around functional tonal Western music. Recent research has suggested that the inter-subject correlation (ISC) of electroencephalographic (EEG) responses to natural audio-visual stimuli objectively indexes a state of "engagement," demonstrating the potential of this approach for analyzing music listening. But can ISCs capture engagement with minimalist music, which features less obvious expectation formation and has historically received a wide range of reactions? To approach this question, we collected EEG and continuous behavioral (CB) data while 30 adults listened to an excerpt from Steve Reich's Piano Phase, as well as three controlled manipulations and a popular-music remix of the work. Our analyses reveal that EEG and CB ISC are highest for the remix stimulus and lowest for our most repetitive manipulation, no statistical differences in overall EEG ISC between our most musically meaningful manipulations and Reich's original piece, and evidence that compositional features drove engagement in time-resolved ISC analyses. We also found that aesthetic evaluations corresponded well with overall EEG ISC. Finally we highlight co-occurrences between stimulus events and time-resolved EEG and CB ISC. We offer the CB paradigm as a useful analysis measure and note the value of minimalist compositions as a limit case for the neuroscientific study of music listening. Overall, our participants' neural, continuous behavioral, and question responses showed strong similarities that may help refine our understanding of the type of engagement indexed by ISC for musical stimuli.

9.
Eur J Neurosci ; 54(10): 7609-7625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34679237

RESUMO

It is well established that neural responses to visual stimuli are enhanced at select locations in the visual field. Although spatial selectivity and the effects of spatial attention are well understood for discrete tasks (e.g. visual cueing), little is known for naturalistic experience that involves continuous dynamic visual stimuli (e.g. driving). Here, we assess the strength of neural responses across the visual space during a kart-race game. Given the varying relevance of visual location in this task, we hypothesized that the strength of neural responses to movement will vary across the visual field, and it would differ between active play and passive viewing. To test this, we measure the correlation strength of scalp-evoked potentials with optical flow magnitude at individual locations on the screen. We find that neural responses are strongly correlated at task-relevant locations in visual space, extending beyond the focus of overt attention. Although the driver's gaze is directed upon the heading direction at the centre of the screen, neural responses were robust at the peripheral areas (e.g. roads and surrounding buildings). Importantly, neural responses to visual movement are broadly distributed across the scalp, with visual spatial selectivity differing across electrode locations. Moreover, during active gameplay, neural responses are enhanced at select locations in the visual space. Conventionally, spatial selectivity of neural response has been interpreted as an attentional gain mechanism. In the present study, the data suggest that different brain areas focus attention on different portions of the visual field that are task-relevant, beyond the focus of overt attention.


Assuntos
Córtex Visual , Campos Visuais , Atenção , Encéfalo , Potenciais Evocados , Estimulação Luminosa , Percepção Visual
10.
Eur J Neurosci ; 52(12): 4695-4708, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32735746

RESUMO

While it is well known that vision guides movement, less appreciated is that the motor cortex also provides input to the visual system. Here, we asked whether neural processing of visual stimuli is acutely modulated during motor activity, hypothesizing that visual evoked responses are enhanced when engaged in a motor task that depends on the visual stimulus. To test this, we told participants that their brain activity was controlling a video game that was in fact the playback of a prerecorded game. The deception, which was effective in half of participants, aimed to engage the motor system while avoiding evoked responses related to actual movement or somatosensation. In other trials, subjects actively played the game with keyboard control or passively watched a playback. The strength of visually evoked responses was measured as the temporal correlation between the continuous stimulus and the evoked potentials on the scalp. We found reduced correlation during passive viewing, but no difference between active and sham play. Alpha-band (8-12 Hz) activity was reduced over central electrodes during sham play, indicating recruitment of motor cortex despite the absence of overt movement. To account for the potential increase of attention during gameplay, we conducted a second study with subjects counting screen items during viewing. We again found increased correlation during sham play, but no difference between counting and passive viewing. While we cannot fully rule out the involvement of attention, our findings do demonstrate an enhancement of visual evoked responses during active vision.


Assuntos
Córtex Motor , Jogos de Vídeo , Atenção , Eletroencefalografia , Potenciais Evocados , Potenciais Evocados Visuais , Humanos , Percepção Visual
11.
Neuroimage ; 214: 116559, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978543

RESUMO

The brain activity of multiple subjects has been shown to synchronize during salient moments of natural stimuli, suggesting that correlation of neural responses indexes a brain state operationally termed 'engagement'. While past electroencephalography (EEG) studies have considered both auditory and visual stimuli, the extent to which these results generalize to music-a temporally structured stimulus for which the brain has evolved specialized circuitry-is less understood. Here we investigated neural correlation during natural music listening by recording EEG responses from N=48 adult listeners as they heard real-world musical works, some of which were temporally disrupted through shuffling of short-term segments (measures), reversal, or randomization of phase spectra. We measured correlation between multiple neural responses (inter-subject correlation) and between neural responses and stimulus envelope fluctuations (stimulus-response correlation) in the time and frequency domains. Stimuli retaining basic musical features, such as rhythm and melody, elicited significantly higher behavioral ratings and neural correlation than did phase-scrambled controls. However, while unedited songs were self-reported as most pleasant, time-domain correlations were highest during measure-shuffled versions. Frequency-domain measures of correlation (coherence) peaked at frequencies related to the musical beat, although the magnitudes of these spectral peaks did not explain the observed temporal correlations. Our findings show that natural music evokes significant inter-subject and stimulus-response correlations, and suggest that the neural correlates of musical 'engagement' may be distinct from those of enjoyment.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Música , Estimulação Acústica/métodos , Adolescente , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
13.
Cereb Cortex Commun ; 1(1): tgaa004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296085

RESUMO

Although techniques for noninvasive brain stimulation are under intense investigation, an approach that has received limited attention is transcranial photobiomodulation (tPBM), the delivery of near-infrared light to the brain with a laser or light-emitting diode directed at the scalp. Here we employed functional magnetic resonance imaging to measure the blood-oxygenation-level-dependent signal in n = 20 healthy human participants while concurrently stimulating their right frontal pole with a near-infrared laser. Functional connectivity with the illuminated region increased by up to 15% during stimulation, with a quarter of all connections experiencing a significant increase. The time course of connectivity exhibited a sharp rise approximately 1 min after illumination onset. Brain-wide connectivity increases were also observed, with connections involving the stimulated hemisphere showing a significantly larger increase than those in the contralateral hemisphere. We subsequently employed magnetic resonance thermometry to measure brain temperature during tPBM (separate cohort, n = 20) and found no significant temperature differences between active and sham stimulation. Our findings suggest that near-infrared light synchronizes brain activity with a nonthermal mechanism, underscoring the promise of tPBM as a new technique for stimulating brain function.

14.
Neurophotonics ; 6(2): 025013, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31259198

RESUMO

Noninvasive transcranial photobiomodulation (tPBM) with a 1064-nm laser has been reported to improve human performance on cognitive tasks as well as locally upregulate cerebral oxygen metabolism and hemodynamics. However, it is unknown whether 1064-nm tPBM also modulates electrophysiology, and specifically neural oscillations, in the human brain. The hypothesis guiding our study is that applying 1064-nm tPBM of the right prefrontal cortex enhances neurophysiological rhythms at specific frequency bands in the human brain under resting conditions. To test this hypothesis, we recorded the 64-channel scalp electroencephalogram (EEG) before, during, and after the application of 11 min of 4-cm-diameter tPBM (CW 1064-nm laser with 162 mW / cm 2 and 107 J / cm 2 ) to the right forehead of human subjects ( n = 20 ) using a within-subject, sham-controlled design. Time-resolved scalp topographies of EEG power at five frequency bands were computed to examine the tPBM-induced EEG power changes across the scalp. The results show time-dependent, significant increases of EEG spectral powers at the alpha (8 to 13 Hz) and beta (13 to 30 Hz) bands at broad scalp regions, exhibiting a front-to-back pattern. The findings provide the first sham-controlled topographic mapping that tPBM increases the strength of electrophysiological oscillations (alpha and beta bands) while also shedding light on the mechanisms of tPBM in the human brain.

15.
Neuroimage ; 185: 408-424, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321643

RESUMO

Online imaging and neuromodulation is invalid if stimulation distorts measurements beyond the point of accurate measurement. In theory, combining transcranial Direct Current Stimulation (tDCS) with electroencephalography (EEG) is compelling, as both use non-invasive electrodes and image-guided dose can be informed by the reciprocity principle. To distinguish real changes in EEG from stimulation artifacts, prior studies applied conventional signal processing techniques (e.g. high-pass filtering, ICA). Here, we address the assumptions underlying the suitability of these approaches. We distinguish physiological artifacts - defined as artifacts resulting from interactions between the stimulation induced voltage and the body and so inherent regardless of tDCS or EEG hardware performance - from methodology-related artifacts - arising from non-ideal experimental conditions or non-ideal stimulation and recording equipment performance. Critically, we identify inherent physiological artifacts which are present in all online EEG-tDCS: 1) cardiac distortion and 2) ocular motor distortion. In conjunction, non-inherent physiological artifacts which can be minimized in most experimental conditions include: 1) motion and 2) myogenic distortion. Artifact dynamics were analyzed for varying stimulation parameters (montage, polarity, current) and stimulation hardware. Together with concurrent physiological monitoring (ECG, respiration, ocular, EMG, head motion), and current flow modeling, each physiological artifact was explained by biological source-specific body impedance changes, leading to incremental changes in scalp DC voltage that are significantly larger than real neural signals. Because these artifacts modulate the DC voltage and scale with applied current, they are dose specific such that their contamination cannot be accounted for by conventional experimental controls (e.g. differing stimulation montage or current as a control). Moreover, because the EEG artifacts introduced by physiologic processes during tDCS are high dimensional (as indicated by Generalized Singular Value Decomposition- GSVD), non-stationary, and overlap highly with neurogenic frequencies, these artifacts cannot be easily removed with conventional signal processing techniques. Spatial filtering techniques (GSVD) suggest that the removal of physiological artifacts would significantly degrade signal integrity. Physiological artifacts, as defined here, would emerge only during tDCS, thus processing techniques typically applied to EEG in the absence of tDCS would not be suitable for artifact removal during tDCS. All concurrent EEG-tDCS must account for physiological artifacts that are a) present regardless of equipment used, and b) broadband and confound a broad range of experiments (e.g. oscillatory activity and event related potentials). Removal of these artifacts requires the recognition of their non-stationary, physiology-specific dynamics, and individualized nature. We present a broad taxonomy of artifacts (non/stimulation related), and suggest possible approaches and challenges to denoising online EEG-tDCS stimulation artifacts.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Encéfalo/fisiologia , Simulação por Computador , Feminino , Humanos , Masculino , Adulto Jovem
16.
Neuroimage ; 175: 12-21, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29580968

RESUMO

Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making.


Assuntos
Fenômenos Biomecânicos/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Córtex Somatossensorial/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto Jovem
17.
Brain Stimul ; 11(3): 465-480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29398575

RESUMO

BACKGROUND: Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. OBJECTIVE: This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. METHODS: The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. RESULTS: Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. CONCLUSIONS: These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.


Assuntos
Educação , Transtornos Mentais/terapia , National Institute of Mental Health (U.S.)/organização & administração , Projetos de Pesquisa/normas , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Transcraniana por Corrente Contínua/normas , Humanos , Reprodutibilidade dos Testes , Estados Unidos
18.
Neuroimage ; 180(Pt A): 134-146, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28545933

RESUMO

In neuroscience, stimulus-response relationships have traditionally been analyzed using either encoding or decoding models. Here we propose a hybrid approach that decomposes neural activity into multiple components, each representing a portion of the stimulus. The technique is implemented via canonical correlation analysis (CCA) by temporally filtering the stimulus (encoding) and spatially filtering the neural responses (decoding) such that the resulting components are maximally correlated. In contrast to existing methods, this approach recovers multiple correlated stimulus-response pairs, and thus affords a richer, multidimensional analysis of neural representations. We first validated the technique's ability to recover multiple stimulus-driven components using electroencephalographic (EEG) data simulated with a finite element model of the head. We then applied the technique to real EEG responses to auditory and audiovisual narratives experienced identically across subjects, as well as uniquely experienced video game play. During narratives, both auditory and visual stimulus-response correlations (SRC) were modulated by attention and tracked inter-subject correlations. During video game play, SRC varied with game difficulty and the presence of a dual task. Interestingly, the strongest component extracted for visual and auditory features of film clips had nearly identical spatial distributions, suggesting that the predominant encephalographic response to naturalistic stimuli is supramodal. The diversity of these findings demonstrates the utility of measuring multidimensional SRC via hybrid encoding-decoding.


Assuntos
Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Adulto Jovem
19.
Neuromodulation ; 21(4): 334-339, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28111832

RESUMO

OBJECTIVE: To assess if transcranial direct current stimulation (tDCS) produces a temperature change at the skin surface, if any change is stimulation polarity (anode or cathode) specific, and the contribution of passive heating (joule heat) or blood flow on such change. MATERIAL AND METHODS: Temperature differences (ΔTs) in an agar phantom study and an in vivo study (forearm stimulation) including 20 volunteers with both experimental measures and finite element method (FEM) multiphysics prediction (current flow and bioheat) models of skin comprising three tissue layers (epidermis, dermis, and subcutaneous layer with blood perfusion) or of the phantom for active stimulation and control cases were compared. Temperature was measured during pre, post, and stimulation phases for both phantom and subject's forearms using thermocouples. RESULTS: In the phantom, ΔT under both anode and cathode, compared to control, was not significantly different and less than 0.1°C. Stimulation of subjects resulted in a gradual increase in temperature under both anode and cathode electrodes, compared to control (at t = 20 min: ΔTanode = 0.9°C, ΔTcathode = 1.1°C, ΔTcontrol = 0.05°C). The FEM phantom model predicted comparable maximum ΔT of 0.27°C and 0.28°C (at t = 20 min) for the control and anode/cathode cases, respectively. The FEM skin model predicted a maximum ΔT at t = 20 min of 0.98°C for control and 1.36°C under anode/cathode electrodes. CONCLUSIONS: Taken together, our results indicate a moderate and nonhazardous increase in temperature at the skin surface during 2 mA tDCS that is independent of polarity, and results from stimulation induced blood flow rather than joule heat.


Assuntos
Calefação , Temperatura Cutânea/fisiologia , Pele , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Simulação por Computador , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estatísticas não Paramétricas , Adulto Jovem
20.
Neuroimage ; 157: 69-80, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28578130

RESUMO

To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroencefalografia/normas , Humanos , Estimulação Transcraniana por Corrente Contínua/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...