Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ann Biomed Eng ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753110

RESUMO

This study aims to estimate the maximum power consumption that guarantees a thermally safe operation for a titanium-enclosed chest wall unit (CWU) subcutaneously implanted in the pre-pectoral area. This unit is a central piece of an envisioned fully-implantable bi-directional brain-computer interface (BD-BCI). To this end, we created a thermal simulation model using the finite element method implemented in COMSOL. We also performed a sensitivity analysis to ensure that our predictions were robust against the natural variation of physiological and environmental parameters. Based on this analysis, we predict that the CWU can consume between 378 and 538 mW of power without raising the surrounding tissue's temperature above the thermal safety threshold of 2  ∘ C. This power budget should be sufficient to power all of the CWU's basic functionalities, which include training the decoder, online decoding, wireless data transmission, and cortical stimulation. This power budget assessment provides an important specification for the design of a CWU-an integral part of a fully-implantable BD-BCI system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38635379

RESUMO

This work presents a bi-directional brain-computer interface (BD-BCI) including a high-dynamic-range (HDR) two-step time-domain neural acquisition (TTNA) system and a high-voltage (HV) multipolar neural stimulation system incorporating dual-mode time-based charge balancing (DTCB) technique. The proposed TTNA includes four independent recording modules that can sense microvolt neural signals while tolerating large stimulation artifacts. In addition, it exhibits an integrated input-referred noise of 2.3 µVrms from 0.1- to 250-Hz and can handle a linear input-signal swing of up to 340 mVPP. The multipolar stimulator is composed of four standalone stimulators each with a maximum current of up to 14 mA (±20-V of voltage compliance) and 8-bit resolution. An inter-channel interference cancellation circuitry is introduced to preserve the accuracy and effectiveness of the DTCB method in the multipolar-stimulation configuration. Fabricated in an HV 180-nm CMOS technology, the BD-BCI chipset undergoes extensive in-vitro and in-vivo evaluations. The recording system achieves a measured SNDR, SFDR, and CMRR of 84.8 dB, 89.6 dB, and >105 dB, respectively. The measurement results verify that the stimulation system is capable of performing high-precision charge balancing with ±2 mV and ±7.5 mV accuracy in the interpulse-bounded time-based charge balancing (TCB) and artifactless TCB modes, respectively.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37856256

RESUMO

The aim of this study is to estimate the maximum power consumption that guarantees the thermal safety of a skull unit (SU). The SU is part of a fully-implantable bi-directional brain computer-interface (BD-BCI) system that aims to restore walking and leg sensation to those with spinal cord injury (SCI). To estimate the SU power budget, we created a bio-heat model using the finite element method (FEM) implemented in COMSOL. To ensure that our predictions were robust against the natural variation of the model's parameters, we also performed a sensitivity analysis. Based on our simulations, we estimated that the SU can nominally consume up to 70 mW of power without raising the surrounding tissues' temperature above the thermal safety threshold of 1°C. When considering the natural variation of the model's parameters, we estimated that the power budget could range between 47 and 81 mW. This power budget should be sufficient to power the basic operations of the SU, including amplification, serialization and A/D conversion of the neural signals, as well as control of cortical stimulation. Determining the power budget is an important specification for the design of the SU and, in turn, the design of a fully-implantable BD-BCI system.


Assuntos
Interfaces Cérebro-Computador , Humanos , Temperatura Alta , Crânio , Cabeça , Próteses e Implantes
4.
J Neural Eng ; 20(5)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666246

RESUMO

Objective.Invasive brain-computer interfaces (BCIs) have shown promise in restoring motor function to those paralyzed by neurological injuries. These systems also have the ability to restore sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can alleviate this problem, residual artifacts generally persist and must be suppressed by back-end methods.Approach.We have developed a technique based on pre-whitening and null projection (PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.Main results.In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation artifacts, our method suppressed artifacts by 78%-80% and 85%, respectively, as measured by a reduction in interference index. When compared to independent component analysis, which is considered the state-of-the-art technique for artifact suppression, our method achieved superior results, while being significantly easier to implement.Significance.PWNP can potentially act as an efficient method of artifact suppression to enable simultaneous stimulation and recording in bi-directional BCIs to biomimetically restore motor function.


Assuntos
Artefatos , Terapia por Estimulação Elétrica , Humanos , Eletrocorticografia , Eletroencefalografia , Amplificadores Eletrônicos
5.
Front Neurosci ; 16: 1021097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312030

RESUMO

Cortical stimulation via electrocorticography (ECoG) may be an effective method for inducing artificial sensation in bi-directional brain-computer interfaces (BD-BCIs). However, strong electrical artifacts caused by electrostimulation may significantly degrade or obscure neural information. A detailed understanding of stimulation artifact propagation through relevant tissues may improve existing artifact suppression techniques or inspire the development of novel artifact mitigation strategies. Our work thus seeks to comprehensively characterize and model the propagation of artifacts in subdural ECoG stimulation. To this end, we collected and analyzed data from eloquent cortex mapping procedures of four subjects with epilepsy who were implanted with subdural ECoG electrodes. From this data, we observed that artifacts exhibited phase-locking and ratcheting characteristics in the time domain across all subjects. In the frequency domain, stimulation caused broadband power increases, as well as power bursts at the fundamental stimulation frequency and its super-harmonics. The spatial distribution of artifacts followed the potential distribution of an electric dipole with a median goodness-of-fit of R 2 = 0.80 across all subjects and stimulation channels. Artifacts as large as ±1,100 µV appeared anywhere from 4.43 to 38.34 mm from the stimulation channel. These temporal, spectral and spatial characteristics can be utilized to improve existing artifact suppression techniques, inspire new strategies for artifact mitigation, and aid in the development of novel cortical stimulation protocols. Taken together, these findings deepen our understanding of cortical electrostimulation and provide critical design specifications for future BD-BCI systems.

6.
J Neural Eng ; 19(3)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576911

RESUMO

Objective.Brain injury is the leading cause of long-term disability worldwide, often resulting in impaired hand function. Brain-machine interfaces (BMIs) offer a potential way to improve hand function. BMIs often target replacing lost function, but may also be employed in neurorehabilitation (nrBMI) by facilitating neural plasticity and functional recovery. Here, we report a novel nrBMI capable of acquiring high-γ(70-115 Hz) information through a unique post-traumatic brain injury (TBI) hemicraniectomy window model, and delivering sensory feedback that is synchronized with, and proportional to, intended grasp force.Approach. We developed the nrBMI to use electroencephalogram recorded over a hemicraniectomy (hEEG) in individuals with TBI. The nrBMI empowered users to exert continuous, proportional control of applied force, and provided continuous force feedback. We report the results of an initial testing group of three human participants with TBI, along with a control group of three skull- and motor-intact volunteers.Main results. All participants controlled the nrBMI successfully, with high initial success rates (2 of 6 participants) or performance that improved over time (4 of 6 participants). We observed high-γmodulation with force intent in hEEG but not skull-intact EEG. Most significantly, we found that high-γcontrol significantly improved the timing synchronization between neural modulation onset and nrBMI output/haptic feedback (compared to low-frequency nrBMI control).Significance. These proof-of-concept results show that high-γnrBMIs can be used by individuals with impaired ability to control force (without immediately resorting to invasive signals like electrocorticography). Of note, the nrBMI includes a parameter to change the fraction of control shared between decoded intent and volitional force, to adjust for recovery progress. The improved synchrony between neural modulations and force control for high-γsignals is potentially important for maximizing the ability of nrBMIs to induce plasticity in neural circuits. Inducing plasticity is critical to functional recovery after brain injury.


Assuntos
Lesões Encefálicas , Interfaces Cérebro-Computador , Reabilitação Neurológica , Eletroencefalografia/métodos , Retroalimentação , Humanos , Reabilitação Neurológica/métodos
7.
Front Neurosci ; 16: 1075971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711153

RESUMO

Introduction: Bi-directional brain-computer interfaces (BD-BCI) to restore movement and sensation must achieve concurrent operation of recording and decoding of motor commands from the brain and stimulating the brain with somatosensory feedback. Methods: A custom programmable direct cortical stimulator (DCS) capable of eliciting artificial sensorimotor response was integrated into an embedded BCI system to form a safe, independent, wireless, and battery powered testbed to explore BD-BCI concepts at a low cost. The BD-BCI stimulator output was tested in phantom brain tissue by assessing its ability to deliver electrical stimulation equivalent to an FDA-approved commercial electrical cortical stimulator. Subsequently, the stimulator was tested in an epilepsy patient with subcortical electrocorticographic (ECoG) implants covering the sensorimotor cortex to assess its ability to elicit equivalent responses as the FDA-approved counterpart. Additional safety features (impedance monitoring, artifact mitigation, and passive and active charge balancing mechanisms) were also implemeneted and tested in phantom brain tissue. Finally, concurrent operation with interleaved stimulation and BCI decoding was tested in a phantom brain as a proof-of-concept operation of BD-BCI system. Results: The benchtop prototype BD-BCI stimulator's basic output features (current amplitude, pulse frequency, pulse width, train duration) were validated by demonstrating the output-equivalency to an FDA-approved commercial cortical electrical stimulator (R 2 > 0.99). Charge-neutral stimulation was demonstrated with pulse-width modulation-based correction algorithm preventing steady state voltage deviation. Artifact mitigation achieved a 64.5% peak voltage reduction. Highly accurate impedance monitoring was achieved with R 2 > 0.99 between measured and actual impedance, which in-turn enabled accurate charge density monitoring. An online BCI decoding accuracy of 93.2% between instructional cues and decoded states was achieved while delivering interleaved stimulation. The brain stimulation mapping via ECoG grids in an epilepsy patient showed that the two stimulators elicit equivalent responses. Significance: This study demonstrates clinical validation of a fully-programmable electrical stimulator, integrated into an embedded BCI system. This low-cost BD-BCI system is safe and readily applicable as a testbed for BD-BCI research. In particular, it provides an all-inclusive hardware platform that approximates the limitations in a near-future implantable BD-BCI. This successful benchtop/human validation of the programmable electrical stimulator in a BD-BCI system is a critical milestone toward fully-implantable BD-BCI systems.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5780-5783, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892433

RESUMO

This paper presents an ultra-low power mixed-signal neural data acquisition (MSN-DAQ) system that enables a novel low-power hybrid-domain neural decoding architecture for implantable brain-machine interfaces with high channel count. Implemented in 180nm CMOS technology, the 32-channel custom chip operates at 1V supply voltage and achieves excellent performance including 1.07µW/channel, 2.37/5.62 NEF/PEF and 88dB common-mode rejection ratio (CMRR) with significant back-end power-saving advantage compared to prior works. The fabricated prototype was further evaluated with in vivo human tests at bedside, and its performance closely follows that of a commercial recording system.


Assuntos
Interfaces Cérebro-Computador , Amplificadores Eletrônicos , Humanos , Próteses e Implantes
9.
Front Neurosci ; 14: 599010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328870

RESUMO

Recent studies have shown the ability to record high-γ signals (80-160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies. However, extraction of the movement-related high-γ remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In our previous work, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested this algorithm on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 ± 12% (mean ± S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 ± 19% (mean ± S.E.M) of EMG artifacts from EEG. In particular, high-γ synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. A more sophisticated measure of high-γ complexity is the fractal dimension (FD). Here, we computed the FD of EEG high-γ on each channel. Relative FD of high-γ was defined as that the FD in move state was subtracted by FD in idle state. We found relative FD of high-γ over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged ~0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. After conventional ICA, a correlation between relative FD of high-γ and force remained high in both hemicraniectomy areas (up to 0.86) and non-hemicraniectomy areas (up to 0.81). Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts. This approach removed EMG artifacts that can contaminate high-gamma activity recorded over the hemicraniectomy.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3066-3069, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018652

RESUMO

The goal of this study is to estimate the thermal impact of a titanium skull unit (SU) implanted on the exterior aspect of the human skull. We envision this unit to house the front-end of a fully implantable electrocorticogram (ECoG)-based bi-directional (BD) brain-computer interface (BCI). Starting from the bio-heat transfer equation with physiologically and anatomically constrained tissue parameters, we used the finite element method (FEM) implemented in COMSOL to build a computational model of the SU's thermal impact. Based on our simulations, we predicted that the SU could consume up to 75 mW of power without raising the temperature of surrounding tissues above the safe limits (increase in temperature of 1°C). This power budget by far exceeds the power consumption of our front-end prototypes, suggesting that this design can sustain the SU's ability to record ECoG signals and deliver cortical stimulation. These predictions will be used to further refine the existing SU design and inform the design of future SU prototypes.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Temperatura Alta , Humanos , Próteses e Implantes , Crânio
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3083-3085, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018656

RESUMO

Bi-directional brain-computer interfaces (BD-BCI) to restore movement and sensation must achieve concurrent operation of recording and decoding of motor commands from the brain and stimulating the brain with somatosensory feedback. Previously we developed and validated a benchtop prototype of a fully implantable BCI system for motor decoding. Here, a prototype artificial sensory stimulator was integrated into the benchtop system to develop a prototype of a fully-implantable BD-BCI. The artificial sensory stimulator incorporates an active charge balancing mechanism based on pulse-width modulation to ensure safe stimulation for chronically interfaced electrodes to prevent damage to brain tissue and electrodes. The feasibility of the BD-BCI system's active charge balancing was tested in phantom brain tissue. With the charge-balancing, the removal of the residual charges on an electrode was evident. This is a critical milestone toward fully-implantable BD-BCI systems.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletrodos Implantados , Movimento , Sensação
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3493-3496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018756

RESUMO

Electrocorticography (ECoG)-based bi-directional (BD) brain-computer interfaces (BCIs) are a forthcoming technology promising to help restore function to those with motor and sensory deficits. A major problem with this paradigm is that the cortical stimulation necessary to elicit artificial sensation creates strong electrical artifacts that can disrupt BCI operation by saturating recording amplifiers or obscuring useful neural signal. Even with state-of-the-art hardware artifact suppression methods, robust signal processing techniques are still required to suppress residual artifacts that are present at the digital back-end. Herein we demonstrate the effectiveness of a pre-whitening and null projection artifact suppression method using ECoG data recorded during a clinical neurostimulation procedure. Our method achieved a maximum artifact suppression of 21.49 dB and significantly increased the number of artifact-free frequencies in the frequency domain. This performance surpasses that of a more traditional independent component analysis methodology, while retaining a reduced complexity and increased computational efficiency.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Artefatos , Projeção , Processamento de Sinais Assistido por Computador
13.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1363-1372, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305930

RESUMO

Wearable grip sensing shows potential for hand rehabilitation, but few studies have studied feasibility early after stroke. Here, we studied a wearable grip sensor integrated with a musical computer game (MusicGlove). Among the stroke patients admitted to a hospital without limiting complications, 13% had adequate hand function for system use. Eleven subjects used MusicGlove at home over three weeks with a goal of nine hours of use. On average they achieved 4.1 ± 3.2 (SD) hours of use and completed 8627 ± 7500 grips, an amount comparable to users in the chronic phase of stroke measured in a previous study. The rank-order usage data were well fit by distributions that arise in machine failure theory. Users operated the game at high success levels, achieving note-hitting success >75% for 84% of the 1061 songs played. They changed game parameters infrequently (31% of songs), but in a way that logically modulated challenge, consistent with the Challenge Point Hypothesis from motor learning. Thus, a therapy based on wearable grip sensing was feasible for home rehabilitation, but only for a fraction of subacute stroke subjects. Subjects made usage decisions consistent with theoretical models of machine failure and motor learning.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade , Mãos , Humanos
14.
J Neural Eng ; 17(2): 026038, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32208379

RESUMO

OBJECTIVE: Electrocorticogram (ECoG)-based brain-computer interfaces (BCIs) are a promising platform for the restoration of motor and sensory functions to those with neurological deficits. Such bi-directional BCI operation necessitates simultaneous ECoG recording and stimulation, which is challenging given the presence of strong stimulation artifacts. This problem is exacerbated if the BCI's analog front-end operates in an ultra-low power regime, which is a basic requirement for fully implantable medical devices. In this study, we developed a novel method for the suppression of stimulation artifacts before they reach the analog front-end. APPROACH: Using elementary biophysical considerations, we devised an artifact suppression method that employs a weak auxiliary stimulation delivered between the primary stimulator and the recording grid. The exact location and amplitude of this auxiliary stimulating dipole were then found through a constrained optimization procedure. The performance of our method was tested in both simulations and phantom brain tissue experiments. MAIN RESULTS: The solution found through the optimization procedure matched the optimal canceling dipole in both simulations and experiments. Artifact suppression as large as 28.7 dB and 22.9 dB were achieved in simulations and brain phantom experiments, respectively. SIGNIFICANCE: We developed a simple constrained optimization-based method for finding the parameters of an auxiliary stimulating dipole that yields optimal artifact suppression. Our method suppresses stimulation artifacts before they reach the analog front-end and may prevent the front-end amplifiers from saturation. Additionally, it can be used along with other artifact mitigation techniques to further reduce stimulation artifacts.


Assuntos
Interfaces Cérebro-Computador , Artefatos , Encéfalo , Eletrocorticografia , Eletrodos
15.
IEEE Trans Biomed Circuits Syst ; 14(2): 332-342, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902769

RESUMO

This article presents an energy-efficient electrocorticography (ECoG) array architecture for fully-implantable brain machine interface systems. A novel dual-mode analog signal processing method is introduced that extracts neural features from high- γ band (80-160 Hz) at the early stages of signal acquisition. Initially, brain activity across the full-spectrum is momentarily observed to compute the feature weights in the digital back-end during full-band mode operation. Subsequently, these weights are fed back to the front-end and the system reverts to base-band mode to perform feature extraction. This approach utilizes a distinct optimized signal pathway based on power envelope extraction, resulting in 1.72× power reduction in the analog blocks and up to 50× potential power savings for digitization and processing (implemented off-chip in this article). A prototype incorporating a 32-channel ultra-low power signal acquisition front-end is fabricated in 180 nm CMOS process with 0.8 V supply. This chip consumes 1.05  µW (0.205  µW for feature extraction only) power and occupies 0.245 [Formula: see text] die area per channel. The chip measurement shows better than 76.5-dB common-mode rejection ratio (CMRR), 4.09 noise efficiency factor (NEF), and 10.04 power efficiency factor (PEF). In-vivo human tests have been carried out with electroencephalography and ECoG signals to validate the performance and dual-mode operation in comparison to commercial acquisition systems.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Amplificadores Eletrônicos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Desenho de Equipamento , Humanos
16.
Front Neurosci ; 14: 597941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584176

RESUMO

Electroencephalographic (EEG) recordings are often contaminated by electromyographic (EMG) artifacts, especially when recording during movement. Existing methods to remove EMG artifacts include independent component analysis (ICA), and other high-order statistical methods. However, these methods can not effectively remove most of EMG artifacts. Here, we proposed a modified ICA model for EMG artifacts removal in the EEG, which is called EMG Removal by Adding Sources of EMG (ERASE). In this new approach, additional channels of real EMG from neck and head muscles (reference artifacts) were added as inputs to ICA in order to "force" the most power from EMG artifacts into a few independent components (ICs). The ICs containing EMG artifacts (the "artifact ICs") were identified and rejected using an automated procedure. ERASE was validated first using both simulated and experimentally-recorded EEG and EMG. Simulation results showed ERASE removed EMG artifacts from EEG significantly more effectively than conventional ICA. Also, it had a low false positive rate and high sensitivity. Subsequently, EEG was collected from 8 healthy participants while they moved their hands to test the realistic efficacy of this approach. Results showed that ERASE successfully removed EMG artifacts (on average, about 75% of EMG artifacts were removed when using real EMGs as reference artifacts) while preserving the expected EEG features related to movement. We also tested the ERASE procedure using simulated EMGs as reference artifacts (about 63% of EMG artifacts removed). Compared to conventional ICA, ERASE removed on average 26% more EMG artifacts from EEG. These findings suggest that ERASE can achieve significant separation of EEG signal and EMG artifacts without a loss of the underlying EEG features. These results indicate that using additional real or simulated EMG sources can increase the effectiveness of ICA in removing EMG artifacts from EEG. Combined with automated artifact IC rejection, ERASE also minimizes potential user bias. Future work will focus on improving ERASE so that it can also be used in real-time applications.

17.
J Neural Eng ; 16(6): 066043, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585451

RESUMO

OBJECTIVE: State-of-the-art invasive brain-machine interfaces (BMIs) have shown significant promise, but rely on external electronics and wired connections between the brain and these external components. This configuration presents health risks and limits practical use. These limitations can be addressed by designing a fully implantable BMI similar to existing FDA-approved implantable devices. Here, a prototype BMI system whose size and power consumption are comparable to those of fully implantable medical devices was designed and implemented, and its performance was tested at the benchtop and bedside. APPROACH: A prototype of a fully implantable BMI system was designed and implemented as a miniaturized embedded system. This benchtop analogue was tested in its ability to acquire signals, train a decoder, perform online decoding, wirelessly control external devices, and operate independently on battery. Furthermore, performance metrics such as power consumption were benchmarked. MAIN RESULTS: An analogue of a fully implantable BMI was fabricated with a miniaturized form factor. A patient undergoing epilepsy surgery evaluation with an electrocorticogram (ECoG) grid implanted over the primary motor cortex was recruited to operate the system. Seven online runs were performed with an average binary state decoding accuracy of 87.0% (lag optimized, or 85.0% at fixed latency). The system was powered by a wirelessly rechargeable battery, consumed ∼150 mW, and operated for >60 h on a single battery cycle. SIGNIFICANCE: The BMI analogue achieved immediate and accurate decoding of ECoG signals underlying hand movements. A wirelessly rechargeable battery and other supporting functions allowed the system to function independently. In addition to the small footprint and acceptable power and heat dissipation, these results suggest that fully implantable BMI systems are feasible.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia/métodos , Eletrodos Implantados , Desenho de Equipamento/métodos , Eletrocorticografia/instrumentação , Desenho de Equipamento/instrumentação , Estudos de Viabilidade , Humanos
18.
IEEE Trans Neural Syst Rehabil Eng ; 27(7): 1467-1472, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31021800

RESUMO

Brain-machine interfaces (BMIs) translate brain signals into control signals for an external device, such as a computer cursor or robotic limb. These signals can be obtained either noninvasively or invasively. Invasive recordings, using electrocorticography (ECoG) or intracortical microelectrodes, provide higher bandwidth and more informative signals. Rehabilitative BMIs, which aim to drive plasticity in the brain to enhance recovery after brain injury, have almost exclusively used non-invasive recordings, such electroencephalography (EEG) or magnetoencephalography (MEG), which have limited bandwidth and information content. Invasive recordings provide more information and spatiotemporal resolution, but do incur risk, and thus are not usually investigated in people with stroke or traumatic brain injury (TBI). Here, in this paper, we describe a new BMI paradigm to investigate the use of higher frequency signals in brain-injured subjects without incurring significant risk. We recorded EEG in TBI subjects who required hemicraniectomies (removal of a part of the skull). EEG over the hemicraniectomy (hEEG) contained substantial information in the high gamma frequency range (65-115 Hz). Using this information, we decoded continuous finger flexion force with moderate to high accuracy (variance accounted for 0.06 to 0.52), which at best approaches that using epidural signals. These results indicate that people with hemicraniectomies can provide a useful resource for developing BMI therapies for the treatment of brain injury.


Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Interfaces Cérebro-Computador , Craniectomia Descompressiva/métodos , Ritmo Gama , Adulto , Artefatos , Eletroencefalografia , Feminino , Dedos/inervação , Humanos , Magnetoencefalografia , Masculino , Contração Muscular , Desenho de Prótese , Desempenho Psicomotor
19.
Artigo em Inglês | MEDLINE | ID: mdl-33033729

RESUMO

The Seventh International Brain-Computer Interface (BCI) Meeting was held May 21-25th, 2018 at the Asilomar Conference Grounds, Pacific Grove, California, United States. The interactive nature of this conference was embodied by 25 workshops covering topics in BCI (also called brain-machine interface) research. Workshops covered foundational topics such as hardware development and signal analysis algorithms, new and imaginative topics such as BCI for virtual reality and multi-brain BCIs, and translational topics such as clinical applications and ethical assumptions of BCI development. BCI research is expanding in the diversity of applications and populations for whom those applications are being developed. BCI applications are moving toward clinical readiness as researchers struggle with the practical considerations to make sure that BCI translational efforts will be successful. This paper summarizes each workshop, providing an overview of the topic of discussion, references for additional information, and identifying future issues for research and development that resulted from the interactions and discussion at the workshop.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2426-2429, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440897

RESUMO

Bi-directional brain-computer interfaces for the restoration of movement and sensation must simultaneously record neural signals and deliver cortical stimulation. This poses a challenge since stimulation artifacts can be orders of magnitude stronger than neural signals. In this article, we propose a novel subspace-based method for the removal of cortical electrical stimulation artifacts. We demonstrate the practical application of our approach on experimentally recorded electroencephalogram data, where artifacts were suppressed by as much as $30-40\mathrm {d}\mathrm {B}$. Our method is computationally simple, yet it achieves superior results to the state-of-the art methods.


Assuntos
Artefatos , Interfaces Cérebro-Computador , Encéfalo/fisiologia , Estimulação Elétrica , Eletroencefalografia , Humanos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...