Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 222: 114941, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455372

RESUMO

Real-time tracking of neurotransmitter levels in vivo has been technically challenging due to the low spatiotemporal resolution of current methods. Since the imbalance of cortical excitation/inhibition (E:I) ratios are associated with a variety of neurological disorders, accurate monitoring of excitatory and inhibitory neurotransmitter levels is crucial for investigating the underlying neural mechanisms of these conditions. Specifically, levels of the excitatory neurotransmitter L-glutamate, and the inhibitory neurotransmitter GABA, are assumed to play critical roles in the E:I balance. Therefore, in this work, a flexible electrochemical microsensor is developed for real-time simultaneous detection of L-glutamate and GABA. The flexible polyimide substrate was used for easier handling during implantation and measurement, along with less brain damage. Further, by electrochemically depositing Pt-black nanostructures on the sensor's surface, the active surface area was enhanced for higher sensitivity. This dual neurotransmitter sensor probe was validated under various settings for its performance, including in vitro, ex vivo tests with glutamatergic neuronal cells and in vivo test with anesthetized rats. Additionally, the sensor's performance has been further investigated in terms of longevity and biocompatibility. Overall, our dual L-glutamate:GABA sensor microprobe has its unique features to enable accurate, real-time, and long-term monitoring of the E:I balance in vivo. Thus, this new tool should aid investigations of neural mechanisms of normal brain function and various neurological disorders.


Assuntos
Técnicas Biossensoriais , Ácido Glutâmico , Ratos , Animais , Encéfalo , Neurotransmissores , Ácido gama-Aminobutírico
2.
IEEE Trans Biomed Eng ; 64(10): 2313-2320, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28207382

RESUMO

OBJECTIVE: Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. METHODS: The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. RESULTS: The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. CONCLUSION: The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. SIGNIFICANCE: Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.


Assuntos
Amplificadores Eletrônicos/economia , Mapeamento Encefálico/economia , Mapeamento Encefálico/instrumentação , Interfaces Cérebro-Computador/economia , Potenciais Evocados/fisiologia , Interface Usuário-Computador , Análise Custo-Benefício , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
3.
J Clin Neurosci ; 17(7): 943-4, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20395143

RESUMO

Two patients are presented with cerebral air embolism. Neurological examination and neuroradiologic studies suggested predominant right hemispheric ischemia. Intestinal mucosal trauma allowed air introduction into the systemic vascular system and left-decubitus positioning of the patients resulted in predominant right-sided brain lesions.


Assuntos
Infarto Cerebral/diagnóstico , Embolia Aérea/diagnóstico , Embolia Intracraniana/diagnóstico , Posicionamento do Paciente/efeitos adversos , Adulto , Idoso , Infarto Cerebral/etiologia , Embolia Aérea/etiologia , Feminino , Humanos , Embolia Intracraniana/etiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...