Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Lett ; 43(2): 407-414, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151450

RESUMO

OBJECTIVE: In this study, we aimed to maximize glutathione (GSH) production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach. RESULTS: A three levels four factorial Box-Behnken Design was used to assess the effect of pH, inulin extract, yeast extract and ammonium sulfate concentrations on cell growth and to generate a mathematical model which predict optimal conditions to maximize biomass production and thus GSH titer. The obtained results revealed that only yeast and inulin extract concentrations significantly affect biomass production. Based on the generated model, a medium composed of 10 g/L of yeast extract and 10 g/L of inulin extract from Jerusalem artichoke was used to conduct batch cultures in 2 L bioreactor. After 48 h of culture, the biomass and the glutathione titer increased by 55% (5.8 gDCW/L) and 61% (1011.4 mg/L), respectively, as compared to non-optimized conditions. CONCLUSION: From the obtained results, it could be observed that the model established from small scale culture (i.e. 2 mL) is able to predict performance at larger scale (i.e. 2 L bioreactor, two orders of magnitude scale-up). Moreover, the results highlight the ability of the optimized process to ensure high titer of glutathione using a low-cost carbon source.


Assuntos
Reatores Biológicos , Glutationa/biossíntese , Engenharia Metabólica , Yarrowia/genética , Sulfato de Amônio/farmacologia , Técnicas de Cultura Celular por Lotes , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Fermentação , Glutationa/isolamento & purificação , Inulina/farmacologia , Modelos Teóricos , Leveduras/química
2.
Microorganisms ; 8(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340345

RESUMO

Tripeptide glutathione, which plays important roles in many cellular mechanisms, is also a biotechnology-oriented molecule with applications in medicine, food and cosmetic. Here, the engineering of the yeast Yarrowia lipolytica for the production of this metabolite at high titer values from various agro-industrial by-products is reported. The constitutive overexpression of the glutathione biosynthetic genes GSH1 and GSH2 encoding respectively γ-glutamylcysteine synthetase and glutathione synthetase, together with the INU1 gene from Kluyveromyces marxianus encoding inulinase yielded a glutathione titer value and a productivity of 644 nmol/mg protein and 510 µmol/gDCW, respectively. These values were obtained during bioreactor batch cultures in a medium exclusively comprising an extract of Jerusalem artichoke tuber, used as a source of inulin, and ammonium sulfate, used as a nitrogen source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA