Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26745-26751, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843892

RESUMO

Affinity maturation of the B cell antigen receptor (BCR) is a conserved and crucial component of the adaptive immune response. BCR lineages, inferred from paired heavy- and light-chain sequences of rearranged Ig genes from multiple descendants of the same naive B cell precursor (the lineages' unmutated common ancestor, "UCA"), make it possible to reconstruct the underlying somatic evolutionary history. We present here an extensive structural and biophysical analysis of a lineage of BCRs directed against the receptor binding site (RBS) of subtype H1 influenza virus hemagglutinin (HA). The lineage includes 8 antibodies detected directly by sequencing, 3 in 1 principal branch and 5 in the other. When bound to HA, the heavy-chain third complementarity determining region (HCDR3) fits with an invariant pose into the RBS, but in each of the 2 branches, the rest of the Fab reorients specifically, from its position in the HA-bound UCA, about a hinge at the base of HCDR3. New contacts generated by the reorientation compensate for contacts lost as the H1 HA mutated during the time between the donor's initial exposure and the vaccination that preceded sampling. Our data indicate that a "pluripotent" naive response differentiated, in each branch, into 1 of its possible alternatives. This property of naive BCRs and persistence of multiple branches of their progeny lineages can offer broader protection from evolving pathogens than can a single, linear pathway of somatic mutation.

2.
Immunity ; 48(1): 174-184.e9, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343437

RESUMO

Human B cell antigen-receptor (BCR) repertoires reflect repeated exposures to evolving influenza viruses; new exposures update the previously generated B cell memory (Bmem) population. Despite structural similarity of hemagglutinins (HAs) from the two groups of influenza A viruses, cross-reacting antibodies (Abs) are uncommon. We analyzed Bmem compartments in three unrelated, adult donors and found frequent cross-group BCRs, both HA-head directed and non-head directed. Members of a clonal lineage from one donor had a BCR structure similar to that of a previously described Ab, encoded by different gene segments. Comparison showed that both Abs contacted the HA receptor-binding site through long heavy-chain third complementarity determining regions. Affinities of the clonal-lineage BCRs for historical influenza-virus HAs from both group 1 and group 2 viruses suggested that serial responses to seasonal influenza exposures had elicited the lineage and driven affinity maturation. We propose that appropriate immunization regimens might elicit a comparably broad response.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vírus da Influenza A/imunologia , Adulto , Técnicas de Cultura de Células , Reações Cruzadas/imunologia , Feminino , Citometria de Fluxo , Hemaglutininas Virais/imunologia , Humanos , Interferometria , Masculino
3.
J Mol Biol ; 429(12): 1829-1839, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28506635

RESUMO

Structure-based vaccine design depends on extensive structural analyses of antigen-antibody complexes.Single-particle electron cryomicroscopy (cryoEM) can circumvent some of the problems of x-ray crystallography as a pipeline for obtaining the required structures. We have examined the potential of single-particle cryoEM for determining the structure of influenza-virus hemagglutinin (HA):single-chain variable-domain fragment complexes, by studying a complex we failed to crystallize in pursuing an extended project on the human immune response to influenza vaccines.The result shows that a combination of cryoEM and molecular modeling can yield details of the antigen-antibody interface, although small variation in the twist of the rod-likeHA trimer limited the overall resolution to about 4.5Å.Comparison of principal 3D classes suggests ways to modify the HA trimer to overcome this limitation. A closely related antibody from the same donor did yield crystals when bound with the same HA, giving us an independent validation of the cryoEM results.The two structures also augment our understanding of receptor-binding site recognition by antibodies that neutralize a wide range of influenza-virus variants.


Assuntos
Anticorpos Antivirais/ultraestrutura , Antígenos Virais/ultraestrutura , Glicoproteínas de Hemaglutininação de Vírus da Influenza/ultraestrutura , Anticorpos Antivirais/química , Antígenos Virais/química , Sítios de Ligação , Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Modelos Moleculares , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/ultraestrutura
4.
Nat Med ; 22(12): 1465-1469, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27820604

RESUMO

For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively. Transmission of an avian-origin virus between humans generally requires one or more mutations in the sequences encoding the influenza virus RBS to change the preferred receptor from avian to human, but passage of a human-derived vaccine candidate in chicken eggs can select for reversion to avian receptor preference. For example, the X-181 strain of the 2009 new pandemic H1N1 influenza virus, derived from the A/California/07/2009 isolate and used in essentially all vaccines since 2009, has arginine at position 226, a residue known to confer preference for an α-2,3 linkage in H1 subtype viruses; the wild-type A/California/07/2009 isolate, like most circulating human H1N1 viruses, has glutamine at position 226. We describe, from three different individuals, RBS-directed antibodies that recognize the avian-adapted H1 strain in current influenza vaccines but not the circulating new pandemic 2009 virus; Arg226 in the vaccine-strain RBS accounts for the restriction. The polyclonal sera of the three donors also reflect this preference. Therefore, when vaccines produced from strains that are never passaged in avian cells become widely available, they may prove more capable of eliciting RBS-directed, broadly neutralizing antibodies than those produced from egg-adapted viruses, extending the established benefits of current seasonal influenza immunizations.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Ácidos Siálicos/imunologia , Animais , Galinhas , Cristalização , Cães , Ovos , Humanos , Imunogenicidade da Vacina/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Plasmócitos/imunologia , Estrutura Terciária de Proteína
5.
Cell Rep ; 13(12): 2842-50, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26711348

RESUMO

Influenza-virus antigenicity evolves to escape host immune protection. Antibody lineages within individuals evolve in turn to increase affinity and hence potency. Strategies for a "universal" influenza vaccine to elicit lineages that escape this evolutionary arms race and protect against seasonal variation and novel, pandemic viruses will require directing B cell ontogeny to focus the humoral response on conserved epitopes on the viral hemagglutinin (HA). The unmutated common ancestors (UCAs) of six distinct, broadly neutralizing antibody lineages from one individual bind the HA of a virus circulating at the time the participant was born. HAs of viruses circulating more than 5 years later no longer bind the UCAs, but mature antibodies in the lineages bind strains from the entire 18-year lifetime of the participant. The analysis shows how immunological memory shaped the response to subsequent influenza exposures and suggests that early imprinting by a suitable influenza antigen may enhance likelihood of later breadth.


Assuntos
Anticorpos Neutralizantes/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos Neutralizantes/biossíntese , Formação de Anticorpos , Sítios de Ligação , Células HEK293 , Humanos , Memória Imunológica , Vacinas contra Influenza/imunologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...