Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002461

RESUMO

This study aims to examine how the climate affects the behaviour of the stock market. To achieve this, we have drawn on daily data from Jan 2005 to Jan 31, 2023 and several environmental factors (e.g., temperature, humidity, cloud cover and visibility) to account for extreme weather conditions using the 21-day moving average and its standard deviation. The empirical analysis has revealed three key findings regarding the impact of weather on the stock market's behaviour. First, various forms of extreme weather conditions consistently lead to influence stock behaviour. Second, results provide valuable insights into market behaviour and help investors to make more informed investment decisions. Third, the weather conditions have new information about the climate risk and investors should react to it swiftly in light of our findings. The saliency theory can help reconcile the theoretical conflicts between the real options and risk-shifting theories when it comes to investing in uncertain and extreme climate conditions.


Assuntos
Mudança Climática , Investimentos em Saúde , Reino Unido , Tempo (Meteorologia)
2.
J Biomater Appl ; 36(3): 428-440, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34027692

RESUMO

Hydroxyapatite (HAp) and octacalcium phosphate (OCP) layers were formed on Mg- 4mass% Y- 3mass% rare earth (WE43) alloy by a chemical solution deposition method at various pH values of pH 5.5, 6.2, 7.5, and 8.6. Adhesion strength of HAp and OCP layers was evaluated before and after immersing in a medium for 14 days by a pull-off test. The corrosion resistance of these coatings was measured by polarization tests performed in a simulated body fluid (SBF). XRD analysis demonstrated that HAp coating layers were formed at pH 7.5 and 8.6, while OCP coating layers were formed at pH 5.5 and 6.2. Adhesion test results showed that the as-coated pH7.5-HAp layer had the highest adhesion strength of 8.6 MPa, which was attributed to the very dense structure of the coating layer. The as-coated pH8.6-HAp layer showed the adhesion strength of 6.5 MPa. The adhesion strength of the as-coated pH5.5- and pH6.2-OCP layers was 3.9 and 7.1 MPa, respectively, that was governed by the thick and fragile property of the layers. After immersing in the medium for 14 days, the adhesion strength of pH7.5- and pH8.6-specimens decreased to 5.8 and 5.6 MPa, respectively. The pitting corrosion and formation of Mg(OH)2 under the HAp layers were responsible for the decrease of adhesion strength. The polarization tests in SBF at 37 °C showed that the corrosion current density decreased with the HAp and OCP coatings, indicating the improvement of the corrosion resistance of WE43 alloy. The HAp coatings improved the corrosion resistance more efficiently than the OCP coatings.


Assuntos
Ligas/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Adesividade , Corrosão , Concentração de Íons de Hidrogênio , Teste de Materiais , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA