Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 44(3): 281-7, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12712286

RESUMO

Soil ingestion can be a major route of human exposure to many immobile soil contaminants. The present risk assessment is based on toxicity studies in which contaminants are typically ingested in liquid or food matrices. The difference in bioavailability of contaminants ingested in a soil matrix is not taken into account. To become bioavailable, contaminants first need to become bioaccessible, i.e., they must be mobilized from the soil during digestion. Soil contaminants may be less bioaccessible than contaminants from liquid or food, so that the risks can be overestimated. This article describes the development of an in vitro human digestion model that is physiologically based. It can be used as a tool to assess bioaccessibility. We explain the rationale behind the experimental design of the model. We address the aspects of the simulated compartments of the gastrointestinal tract, temperature, soil-to-fluid ratio, ratio of digestive juices, transit times, centrifugation, pH values, mixing, constituents and their concentrations, and bile. The optimized in vitro digestion model was applied in a case study. The bioaccessibility of lead in pottery flakes with glazing was determined and compared to the bioaccessibility of lead in the soil from which the pottery flakes were removed. The data indicate that pottery flake lead is considerably less bioaccessible (0.3 +/- 0.2%) than lead in soil without pottery flakes (42-66% at the same site, and 28-73% at other sites in the same town). Furthermore, bioaccessibility values of lead in soil appear to be less than calculated bioaccessibility values for dietary lead (which are based on the criterion used by the Dutch risk assessment and on literature absorption data). This indicates that accounting for the matrix of ingestion can affect the exposure assessment for lead. The in vitro digestion model is a promising tool for studying the effect of the ingestion matrix on bioaccessibility.


Assuntos
Fenômenos Fisiológicos do Sistema Digestório , Modelos Biológicos , Poluentes do Solo/farmacocinética , Disponibilidade Biológica , Humanos , Chumbo/farmacocinética , Medição de Risco
2.
Physiol Behav ; 73(1-2): 43-9, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11399293

RESUMO

Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.


Assuntos
Nível de Alerta/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Ruído/efeitos adversos , Animais , Corticosterona/sangue , Endocitose/fisiologia , Peroxidase do Rábano Silvestre/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Masculino , Microscopia Eletrônica , Ratos , Ratos Wistar
3.
Neuroendocrinology ; 65(3): 200-9, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9088001

RESUMO

Despite a number of studies on noise-induced health effects, it is still unclear to what extent different neuroendocrine pathways are affected by noise exposure. Male Wistar rats were housed in sound-attenuated rooms isolated for noise from outside. Three groups of chronically cannulated rats were exposed to either background noise (+/-64 dB) only or irregular experimental white noise (90 dB, 2-22 kHz). Two protocols, with approximately the same total amount of noise but with different densities, were used: protocol N1 (180 min random noise per day for 18 days) or protocol N2 (540 min random noise per day for 8 days). Basal levels of circulating hormones (ACTH, corticosterone, prolactin and catecholamines) and plasma glucose were measured. In control animals, no significant changes in any of these parameters were observed over 18 days. Except for plasma prolactin, N1 did not induce a significant elevation in basal hormonal levels. N2 however induced significant elevation in basal prolactin, corticosterone and noradrenaline levels. At the end of the exposure period, all animals were subjected to a novel heterotypic stressor (restraint stress) to monitor differences in neuroendocrine activation (ACTH, corticosterone and prolactin). Compared to nonexposed control animals, N1 animals showed a normal ACTH and an enhanced corticosterone response, whereas N2 animals showed an increased ACTH but a normal corticosterone response. The prolactin response of both N1 and N2 animals was significantly decreased. Adrenal cell suspension experiments revealed that in noise-exposed rats both basal- and ACTH-stimulated corticosterone production were significantly increased as compared to control animals. These results indicate that chronic noise exposure at mild intensities induces subtle but significant changes in hormonal regulation.


Assuntos
Hormônios/sangue , Sistemas Neurossecretores/metabolismo , Ruído , Restrição Física , Estresse Fisiológico/etiologia , Estresse Fisiológico/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/efeitos dos fármacos , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/farmacologia , Animais , Catecolaminas/sangue , Corticosterona/biossíntese , Corticosterona/sangue , Masculino , Prolactina/sangue , Ratos , Ratos Wistar , Fatores de Tempo
4.
Physiol Behav ; 60(6): 1527-33, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8946501

RESUMO

Noise is a highly relevant environmental and clinical stressor. Compared to most other experimental stressors, noise is a modest activator of neuroendocrine pathways that mimic the situation in human health where neuroendocrine activation by environmental stressors is often absent or difficult to establish. Little is known about the effects of noise exposure on the immune system. In the present work, the effects of a low-intensity chronic intermittent unpredictable noise regimen on various parameters of immune function was studied. Male wistar rats were exposed to a randomized noise protocol (white noise, 85 dB, 2-20 kHz) for 10 h per day, 15 min per h over a total period of 3 weeks. Control animals were exposed to ambient sound only. Immune function was monitored after 24 h, 7 days, and 21 days of noise exposure. Noise induced several significant changes in immune function in a time-dependent differential pattern involving both immunosuppression and immunoenhancement. After 24 h, serum IgM levels were increased and peripheral phagocytic activity was decreased. Splenic lymphocytic proliferation to mitogens was significantly decreased after 7 days, but slightly elevated after 3 weeks. The activity of splenic NK cells was increased significantly after 24 h and 7 days, but suppressed after 3 weeks. These results show that various parameters of immune function are affected differentially over time in a period of chronic mild noise stress, possibly due to sequential activation of different physiological mechanisms.


Assuntos
Imunoglobulinas/metabolismo , Linfócitos/fisiologia , Ruído , Estresse Fisiológico/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...