Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(16): e113616, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317646

RESUMO

Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Caenorhabditis elegans/genética , Filogenia , Cílios/genética , Proteínas de Drosophila/genética
2.
Curr Biol ; 33(4): R150-R153, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36854274

RESUMO

Cilia are membrane-surrounded sensory cellular organelles that can also create motion to move fluids or propel the cell to which they are attached. New work shows that, whereas transition fibers are essential for cilia attachment to the membrane in most systems studied, transition fibers in Drosophila are only involved in cilia extension after docking.


Assuntos
Cílios , Citoesqueleto , Animais , Microtúbulos , Membrana Celular , Drosophila
3.
EMBO Rep ; 24(3): e56683, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36727294

RESUMO

Addressing climate change and sustainability starts with individuals and moves up to institutional change. Here is what we as scientists in the life sciences can do to enact change.


Assuntos
Disciplinas das Ciências Biológicas , Mudança Climática , Humanos
4.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073765

RESUMO

Climate change is the greatest challenge of our time, and drastic climate action is needed urgently across industries and sectors to prevent the worst in terms of consequences. Although academic research brings great benefits to society, it leaves behind a considerable environmental footprint at the same time. This is particularly true for lab research within the life sciences. To reduce the climate impact of academic research, both bottom-up and top-down strategies are necessary. On the bottom-up side, 'green' grassroots groups are emerging in academia, but most institutions fail to nurture and harness their potential for driving change. We report findings from a survey of 63 such grassroots groups operating in academic environments, highlighting that their main challenges in making research more sustainable include lack of time, budget, involvement in management decisions and support from management. For the first time, we map the inception, goals and structure of green grassroots groups in academia and outline concrete steps in overcoming barriers to harvest their full potential, thus making academic research fit for the future.


Assuntos
Mudança Climática
5.
Curr Biol ; 30(15): 3045-3056.e7, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32589908

RESUMO

Centrioles are highly elaborate microtubule-based structures responsible for the formation of centrosomes and cilia. Despite considerable variation across species and tissues within any given tissue, their size is essentially constant [1, 2]. While the diameter of the centriole cylinder is set by the dimensions of the inner scaffolding structure of the cartwheel [3], how centriole length is set so precisely and stably maintained over many cell divisions is not well understood. Cep97 and CP110 are conserved proteins that localize to the distal end of centrioles and have been reported to limit centriole elongation in vertebrates [4, 5]. Here, we examine Cep97 function in Drosophila melanogaster. We show that Cep97 is essential for formation of full-length centrioles in multiple tissues of the fly. We further identify the microtubule deacetylase Sirt2 as a Cep97 interactor. Deletion of Sirt2 likewise affects centriole size. Interestingly, so does deletion of the acetylase Atat1, indicating that loss of stabilizing acetyl marks impairs centriole integrity. Cep97 and CP110 were originally identified as inhibitors of cilia formation in vertebrate cultured cells [6], and loss of CP110 is a widely used marker of basal body maturation. In contrast, in Drosophila, Cep97 appears to be only transiently removed from basal bodies and loss of Cep97 strongly impairs ciliogenesis. Collectively, our results support a model whereby Cep97 functions as part of a protective cap that acts together with the microtubule acetylation machinery to maintain centriole stability, essential for proper function in cilium biogenesis.


Assuntos
Centríolos/fisiologia , Centrossomo , Cílios , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Morfogênese/genética , Animais , Corpos Basais/metabolismo , Células Cultivadas , Centrossomo/metabolismo , Cílios/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Morfogênese/fisiologia
6.
Cell ; 167(2): 539-552.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716509

RESUMO

Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Cinesinas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Oncogênicas/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Drosophila melanogaster , Humanos , Fenômenos Mecânicos
7.
Methods Cell Biol ; 129: 279-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175444

RESUMO

Centrosomes act as the major microtubule organizing centers in animal cells. To fully understand how the centrosome functions, a detailed analysis of its principal structural components and regulators is needed. Genome-wide RNA interference (RNAi) allows for comprehensive screening of all components. Drosophila tissue culture cells provide an attractive model for such screens. First, Drosophila centrosomes are similar to their human counterparts, but less complex. Thus, all major centrosome components are conserved and fewer redundancies apply. Second, RNAi is highly efficient in Drosophila tissue culture cells and, compared to RNAi in human cells, it is cost-effective. Finally, the availability of comprehensive libraries permits easy genome-wide screening of most of Drosophila's 14,000 protein coding genes. In this paper, we present detailed instructions for designing, performing, and analyzing a genome-wide screen in Drosophila tissue culture cells to identify centrosome components using a microscopy-based approach.


Assuntos
Centrossomo/fisiologia , Animais , Linhagem Celular , Drosophila , Técnicas de Silenciamento de Genes , Genoma , Microscopia de Fluorescência , Interferência de RNA
8.
Dev Cell ; 28(6): 659-69, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24656740

RESUMO

Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Microtúbulos/metabolismo , Dados de Sequência Molecular , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas do Sistema de Duplo-Híbrido , Quinase 1 Polo-Like
9.
J Cell Biol ; 203(5): 785-99, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24297749

RESUMO

CP110 is a conserved centriole protein implicated in the regulation of cell division, centriole duplication, and centriole length and in the suppression of ciliogenesis. Surprisingly, we report that mutant flies lacking CP110 (CP110Δ) were viable and fertile and had no obvious defects in cell division, centriole duplication, or cilia formation. We show that CP110 has at least three functions in flies. First, it subtly influences centriole length by counteracting the centriole-elongating activity of several centriole duplication proteins. Specifically, we report that centrioles are ~10% longer than normal in CP110Δ mutants and ~20% shorter when CP110 is overexpressed. Second, CP110 ensures that the centriolar microtubules do not extend beyond the distal end of the centriole, as some centriolar microtubules can be more than 50 times longer than the centriole in the absence of CP110. Finally, and unexpectedly, CP110 suppresses centriole overduplication induced by the overexpression of centriole duplication proteins. These studies identify novel and surprising functions for CP110 in vivo in flies.


Assuntos
Centríolos/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Processamento Alternativo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Centríolos/ultraestrutura , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/análise , Masculino , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura
10.
Biol Open ; 1(5): 422-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213433

RESUMO

Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT) organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD(120) mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

11.
Curr Biol ; 20(24): 2178-86, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21145741

RESUMO

BACKGROUND: centrosomes are major microtubule organizing centers in animal cells, and they comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Centrosome size is tightly regulated during the cell cycle, and it has recently been shown that the two centrosomes in certain stem cells are often asymmetric in size. There is compelling evidence that centrioles influence centrosome size, but how centrosome size is set remains mysterious. RESULTS: we show that the conserved Drosophila PCM protein Cnn exhibits an unusual dynamic behavior, because Cnn molecules only incorporate into the PCM closest to the centrioles and then spread outward through the rest of the PCM. Cnn incorporation into the PCM is driven by an interaction with the conserved centriolar proteins Asl (Cep152 in humans) and DSpd-2 (Cep192 in humans). The rate of Cnn incorporation into the PCM is tightly regulated during the cell cycle, and this rate influences the amount of Cnn in the PCM, which in turn is an important determinant of overall centrosome size. Intriguingly, daughter centrioles in syncytial embryos only start to incorporate Cnn as they disengage from their mothers; this generates a centrosome size asymmetry, with mother centrioles always initially organizing more Cnn than their daughters. CONCLUSIONS: centrioles can control the amount of PCM they organize by regulating the rate of Cnn incorporation into the PCM. This mechanism can explain how centrosome size is regulated during the cell cycle and also allows mother and daughter centrioles to set centrosome size independently of one another.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas de Homeodomínio/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Proteínas de Homeodomínio/genética , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
J Cell Biol ; 188(3): 313-23, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20123993

RESUMO

In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP-orthologues of ZYG-1, SAS-6, and SAS-4, respectively-are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Caenorhabditis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Centríolos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Ovos , Humanos , Especificidade da Espécie
13.
J Cell Biol ; 187(3): 355-63, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19948479

RESUMO

Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.


Assuntos
Centríolos/ultraestrutura , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Animais , Proteínas de Ciclo Celular , Centríolos/metabolismo , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos
14.
PLoS Biol ; 6(9): e224, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18798690

RESUMO

Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Here, we have performed a microscopy-based genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes) and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1) nine are required for centriole duplication, (2) 11 are required for centrosome maturation, (3) nine are required for both functions, and (4) three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn) can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Drosophila melanogaster/genética , Genoma , Interferência de RNA , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Fuso Acromático/genética , Fuso Acromático/metabolismo
15.
Cell ; 125(1): 85-98, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16615892

RESUMO

During anaphase, spindle elongation pulls sister chromatids apart until each pair is fully separated. In turn, cytokinesis cleaves the cell between the separated chromosomes. What ensures that cytokinesis proceeds only after that all chromosome arms are pulled out of the cleavage plane was unknown. Here, we show that a signaling pathway, which we call NoCut, delays the completion of cytokinesis in cells with spindle-midzone defects. NoCut depends on the Aurora kinase Ipl1 and the anillin-related proteins Boi1 and Boi2, which localize to the site of cleavage in an Ipl1-dependent manner and act as abscission inhibitors. Inactivation of NoCut leads to premature abscission and chromosome breakage by the cytokinetic machinery and is lethal in cells with spindle-elongation defects. We propose that NoCut monitors clearance of chromatin from the midzone to ensure that cytokinesis completes only after all chromosomes have migrated to the poles.


Assuntos
Quebra Cromossômica , Cromossomos Fúngicos/fisiologia , Citocinese/fisiologia , Transdução de Sinais , Fuso Acromático/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aurora Quinases , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
EMBO J ; 24(7): 1440-52, 2005 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15775961

RESUMO

SCF-type (SCF: Skp1-Cullin-F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCF(Grr1) functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APC(Cdh1), but instead requires the SCF(Grr1) E3 ligase. Grr1 is recruited to the mother-bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCF(Grr1)-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis.


Assuntos
Actomiosina/metabolismo , Citocinese/fisiologia , Fase G1/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Western Blotting , Proteínas F-Box , Componentes do Gene , Proteínas de Fluorescência Verde , Meia-Vida , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína/genética , Transporte Proteico/fisiologia , Leveduras
17.
Science ; 305(5682): 393-6, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15256669

RESUMO

During cytokinesis, furrow ingression and plasma membrane fission irreversibly separate daughter cells. How actomyosin ring assembly and contraction, vesicle fusion, and abscission are spatially coordinated was unknown. We found that during cytokinesis septin rings, located on both sides of the actomyosin ring, acted as barriers to compartmentalize the cortex around the cleavage site. Compartmentalization maintained diffusible cortical factors, such as the exocyst and the polarizome, to the site of cleavage. In turn, such factors were required for actomyosin ring function and membrane abscission. Thus, a specialized cortical compartment ensures the spatial coordination of cytokinetic events.


Assuntos
Compartimento Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas Ativadoras de ras GTPase , Actomiosina/fisiologia , Proteínas de Ciclo Celular/genética , Quitina Sintase/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Profilinas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Dev Cell ; 4(3): 345-57, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12636916

RESUMO

Septins are GTPases involved in cytokinesis. In yeast, they form a ring at the cleavage site. Using FRAP, we show that septins are mobile within the ring at bud emergence and telophase and are immobile during S, G2, and M phases. Immobilization of the septins is dependent on both Cla4, a PAK-like kinase, and Gin4, a septin-dependent kinase that can phosphorylate the septin Shs1/Sep7. Induction of septin ring dynamics in telophase is triggered by the translocation of Rts1, a kinetochore-associated regulatory subunit of PP2A phosphatase, to the bud neck and correlates with Rts1-dependent dephosphorylation of Shs1. In rts1-Delta cells, the actomyosin ring contracts properly but cytokinesis fails. Together our results implicate septins in a late step of cytokinesis and indicate that proper regulation of septin dynamics, possibly through the control of their phosphorylation state, is required for the completion of cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Organelas/metabolismo , Organelas/ultraestrutura , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Profilinas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...