Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 13(11): 4923-4929, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24409091

RESUMO

Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

2.
Anal Chem ; 84(5): 2292-8, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22296224

RESUMO

We specify the O(2)(+) probe conditions and subsequent data analysis required to obtain high depth resolution secondary ion mass spectrometry profiles from multiple Ge/Si(1-x)Ge(x) quantum well structures (0.6 ≤ x ≤ 1). Using an O(2)(+) beam at normal incidence and with energies >500 eV, we show that the measured Ge signal is not monotonic with concentration, the net result being an unrepresentative and unquantifiable depth profile. This behavior is attributed to a reduced Ge ionization rate as x approaches 1. At lower beam energies the signal behaves monotonically with Ge fraction, indicating that the Ge atoms are now ionizing more readily for the whole range of x, enabling quantitative profiles to be obtained. To establish the depth scale a point-by-point approach based on previously determined erosion rates as a function of x is shown to produce quantum well thicknesses in excellent agreement with those obtained using transmission electron microscopy. The findings presented here demonstrate that to obtain reliable quantitative depth profiles from Ge containing samples requires O(2)(+) ions below 500 eV and correct account to be taken of the erosion rate variation that exists between layers of different matrix composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...