Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32232464

RESUMO

Age-dependent oocyte aneuploidy, a major cause of Down syndrome, is associated with declining sister chromatid cohesion in postnatal oocytes. Here we show that cohesion in postnatal mouse oocytes is regulated by Tex19.1. We show Tex19.1-/- oocytes have defects maintaining chiasmata, missegregate their chromosomes during meiosis, and transmit aneuploidies to the next generation. Furthermore, we show that mouse Tex19.1 inhibits N-end rule protein degradation mediated by its interacting partner UBR2, and that Ubr2 itself has a previously undescribed role in negatively regulating the acetylated SMC3 subpopulation of cohesin in mitotic somatic cells. Lastly, we show that acetylated SMC3 is associated with meiotic chromosome axes in mouse oocytes, and that this population of cohesin is specifically depleted in the absence of Tex19.1. These findings indicate that Tex19.1 regulates UBR protein activity to maintain acetylated SMC3 and sister chromatid cohesion in postnatal oocytes and prevent aneuploidy from arising in the female germline.


Assuntos
Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a RNA/genética , Troca de Cromátide Irmã/genética , Ubiquitina-Proteína Ligases/genética , Aneuploidia , Animais , Linhagem da Célula/genética , Cromátides/genética , Segregação de Cromossomos/genética , Feminino , Células Germinativas/crescimento & desenvolvimento , Humanos , Meiose/genética , Camundongos , Camundongos Knockout , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Coesinas
2.
Elife ; 62017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806172

RESUMO

Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Embrionárias Murinas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Recombinação Genética , Animais , Técnicas de Inativação de Genes , Camundongos , Proteínas Nucleares/genética , Ligação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
J Gen Virol ; 94(Pt 12): 2819-2827, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045112

RESUMO

The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt-Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.


Assuntos
Encefalopatia Espongiforme Bovina/fisiopatologia , Encefalopatia Espongiforme Bovina/transmissão , Príons/metabolismo , Animais , Encéfalo/metabolismo , Bovinos , Humanos , Camundongos , Camundongos Transgênicos , Príons/genética
4.
J Virol ; 87(10): 5895-903, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487470

RESUMO

Most current diagnostic tests for transmissible spongiform encephalopathies (TSE) rely on the presence of proteinase K (PK)-resistant PrP(Sc) (PrP-res) in postmortem tissues as an indication of TSE disease. However, a number of studies have highlighted a discrepancy between TSE infectivity and PrP-res levels in both natural and experimental cases of TSE disease. Previously, we have shown high TSE infectivity levels in the brain tissue of mice that have a clinical TSE disease with associated vacuolar pathology but little or no detectable PrP-res. Here, the levels of TSE infectivity and PrP-res within a peripheral tissue of this mouse model were investigated. Biochemical analysis showed that low levels of PrP-res were present in the spleen tissue in comparison to the levels observed in the spleen of mice infected with ME7 or 79A. However, upon subpassage of brain and spleen tissue from clinically ill mice with little or no PrP-res detectable, similar short incubation periods to disease were observed, indicating that infectivity levels were similarly high in both tissues. Thus, the discrepancy between PrP-res and TSE infectivity was also present in the peripheral tissues of this disease model. This result indicates that peripheral tissues can contain higher levels of infectivity given the correct combination of host species, PrP genotype, and TSE agent. Therefore, the assumption that the levels of peripheral infectivity are lower than those in the central nervous system is not always correct, and this could have implications for current food safety regulations.


Assuntos
Proteínas PrPSc/análise , Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Endopeptidase K/metabolismo , Período de Incubação de Doenças Infecciosas , Camundongos , Camundongos Transgênicos , Doenças Priônicas/diagnóstico , Baço/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...