Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38316048

RESUMO

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Assuntos
Carcinógenos , Nitrosaminas , Humanos , Animais , Carcinógenos/toxicidade , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Mutagênicos/toxicidade , Roedores/metabolismo , Carcinogênese , Carbono , Testes de Mutagenicidade
3.
J Med Chem ; 65(23): 15584-15607, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36441966

RESUMO

The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.


Assuntos
Nitrosaminas , Nitrosaminas/toxicidade , Aminas , Preparações Farmacêuticas
4.
Chem Res Toxicol ; 35(3): 475-489, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35212515

RESUMO

The potential for N-nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. N-Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight N,N-dialkylnitrosamine impurities. Regulatory authorities have issued guidance to market authorization holders to review all commercial drug substances/products for the potential risk of N-nitrosamine impurities, and in cases where a significant risk of N-nitrosamine impurity is identified, analytical confirmatory testing is required. A key factor to consider prior to analytical testing is the estimation of the daily acceptable intake (AI) of the N-nitrosamine impurity. A significant proportion of N-nitrosamine drug product impurities are unique/complex structures for which the development of low-level analytical methods is challenging. Moreover, these unique/complex impurities may be less potent carcinogens compared to simple nitrosamines. In the present work, our objective was to derive AIs for a large number of complex N-nitrosamines without carcinogenicity data that were identified as potential low-level impurities. The impurities were first cataloged and grouped according to common structural features, with a total of 13 groups defined with distinct structural features. Subsequently, carcinogenicity data were reviewed for structurally related N-nitrosamines relevant to each of the 13 structural groups and group AIs were derived conservatively based on the most potent N-nitrosamine within each group. The 13 structural group AIs were used as the basis for assigning AIs to each of the structurally related complex N-nitrosamine impurities. The AIs of several N-nitrosamine groups were found to be considerably higher than those for the simple N,N-dialkylnitrosamines, which translates to commensurately higher analytical method detection limits.


Assuntos
Nitrosaminas , Carcinógenos , Contaminação de Medicamentos , Humanos
5.
Environ Mol Mutagen ; 62(5): 293-305, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34089278

RESUMO

A genotoxic carcinogen, N-nitrosodimethylamine (NDMA), was detected as a synthesis impurity in some valsartan drugs in 2018, and other N-nitrosamines, such as N-nitrosodiethylamine (NDEA), were later detected in other sartan products. N-nitrosamines are pro-mutagens that can react with DNA following metabolism to produce DNA adducts, such as O6 -alkyl-guanine. The adducts can result in DNA replication miscoding errors leading to GC>AT mutations and increased risk of genomic instability and carcinogenesis. Both NDMA and NDEA are known rodent carcinogens in male and female rats. The DNA repair enzyme, methylguanine DNA-methyltransferase can restore DNA integrity via the removal of alkyl groups from guanine in an error-free fashion and this can result in nonlinear dose responses and a point of departure or "practical threshold" for mutation at low doses of exposure. Following International recommendations (ICHM7; ICHQ3C and ICHQ3D), we calculated permissible daily exposures (PDE) for NDMA and NDEA using published rodent cancer bioassay and in vivo mutagenicity data to determine benchmark dose values and define points of departure and adjusted with appropriate uncertainty factors (UFs). PDEs for NDMA were 6.2 and 0.6 µg/person/day for cancer and mutation, respectively, and for NDEA, 2.2 and 0.04 µg/person/day. Both PDEs are higher than the acceptable daily intake values (96 ng for NDMA and 26.5 ng for NDEA) calculated by regulatory authorities using simple linear extrapolation from carcinogenicity data. These PDE calculations using a bench-mark approach provide a more robust assessment of exposure limits compared with simple linear extrapolations and can better inform risk to patients exposed to the contaminated sartans.


Assuntos
Adutos de DNA , Exposição Ambiental/análise , Mutação , Nitrosaminas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carcinógenos/toxicidade , Feminino , Masculino , Ratos
6.
Int J Toxicol ; 40(3): 285-298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33525949

RESUMO

A workshop entitled "Deriving Compound-Specific Exposure Limits for Chemicals Used in Pharmaceutical Synthesis" was held at the 2018 Genetic Toxicology Association annual meeting. The objectives of the workshop were to provide an educational forum and use case studies and live multiple-choice polling to establish the degree of similarity/diversity in approach/opinion of the industry experts and other delegates present for some of the more challenging decision points that need to be considered when developing a compound-specific exposure limit (ie, acceptable intake or permissible or permitted daily exposure). Herein we summarize the relevant background and case study information for each decision point topic presented as well as highlight significant polling responses and discussion points. A common observation throughout was the requirement for expert judgment to be applied at each of the decision points presented which often results in different reasoning being applied by the risk assessor when deriving a compound-specific exposure limit. This supports the value of precompetitive cross-industry collaborations to develop compound-specific limits and harmonize the methodology applied, thus reducing the associated uncertainty inherent in the application of isolated expert judgment in this context. An overview of relevant precompetitive cross-industry collaborations working to achieve this goal is described.


Assuntos
Exposição Ambiental/normas , Guias como Assunto , Preparações Farmacêuticas/normas , Medição de Risco/normas , Toxicologia/normas , Estudos de Casos e Controles , Tomada de Decisões , Humanos
7.
Regul Toxicol Pharmacol ; 118: 104807, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058939

RESUMO

Pharmaceutical applicants conduct (Q)SAR assessments on identified and theoretical impurities to predict their mutagenic potential. Two complementary models-one rule-based and one statistical-based-are used, followed by expert review. (Q)SAR models are continuously updated to improve predictions, with new versions typically released on a yearly basis. Numerous releases of (Q)SAR models will occur during the typical 6-7 years of drug development until new drug registration. Therefore, it is important to understand the impact of model updates on impurity mutagenicity predictions over time. Compounds representative of pharmaceutical impurities were analyzed with three rule- and three statistical-based models covering a 4-8 year period, with the individual time frame being dependent on when the individual models were initially made available. The largest changes in the combined outcome of two complementary models were from positive or equivocal to negative and from negative to equivocal. Importantly, the cumulative change of negative to positive predictions was small in all models (<5%) and was further reduced when complementary models were combined in a consensus fashion. We conclude that model updates of the type evaluated in this manuscript would not necessarily require re-running a (Q)SAR prediction unless there is a specific need. However, original (Q)SAR predictions should be evaluated when finalizing the commercial route of synthesis for marketing authorization.


Assuntos
Contaminação de Medicamentos , Desenvolvimento de Medicamentos , Modelos Moleculares , Testes de Mutagenicidade , Preparações Farmacêuticas/análise , Software , Animais , Simulação por Computador , Humanos , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Fatores de Tempo , Fluxo de Trabalho
8.
Environ Mol Mutagen ; 60(9): 766-777, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335992

RESUMO

Arylboronic acids and esters (referred to collectively as arylboronic compounds) are commonly used intermediates in the synthesis of pharmaceuticals but pose a challenge for chemical syntheses because they are often positive for bacterial mutagenicity in vitro. As such, arylboronic compounds are then typically controlled to levels that are acceptable for mutagenic impurities, that is, the threshold of toxicological concern (TTC). This study used ICH M7 guidance to design and conduct a testing strategy to investigate the in vivo relevance of the in vitro positive findings of arylboronic compounds. Eight arylboronic compounds representing a variety of chemical scaffolds were tested in Sprague Dawley and/or Wistar rats in the in vivo Pig-a (peripheral blood reticulocytes and mature red blood cells) and/or comet assays (duodenum and/or liver). Five of the eight compounds were also tested in the micronucleus (peripheral blood) assay. The arylboronic compounds tested orally demonstrated high systemic exposure; thus the blood and bone marrow were adequately exposed to test article. One compound was administered intravenously due to formulation stability issues. This investigation showed that arylboronic compounds that were mutagenic in vitro were not found to be mutagenic in the corresponding in vivo assays. Therefore, arylboronic compounds similar to the scaffolds tested in this article may be considered non-mutagenic and managed in accordance with the ICH Q3A/Q3B guidelines. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Ácidos Borônicos/toxicidade , Ésteres/toxicidade , Mutagênicos/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Ensaio Cometa/métodos , Duodeno/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fígado/diagnóstico por imagem , Masculino , Testes para Micronúcleos/métodos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reticulócitos/efeitos dos fármacos
9.
Regul Toxicol Pharmacol ; 107: 104403, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195068

RESUMO

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.


Assuntos
Modelos Teóricos , Mutagênicos/toxicidade , Projetos de Pesquisa , Toxicologia/métodos , Animais , Simulação por Computador , Humanos , Testes de Mutagenicidade , Medição de Risco
10.
Environ Mol Mutagen ; 60(7): 588-593, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31001845

RESUMO

2-Hydroxypyridine N-oxide (HOPO) is an important coupling reagent used in pharmaceutical synthesis. Our laboratory previously reported HOPO as equivocal in the Ames assay following extensive testing of multiple lots of material. Given the lack of reproducibility between lots of material and the weak increase in revertants observed, it was concluded that it would be highly unlikely that HOPO would pose a mutagenic risk in vivo. The purpose of the current investigation was to assess experimentally in rats the mutagenic (Pig-a mutation induction) and more broadly genotoxic (micronucleus and comet induction) potential of HOPO. Rats were administered HOPO (0, 50, 150, 300, and 500 mg/kg/day) by oral gavage for 28 days. At the end of study, the following parameters were assessed: frequency of Pig-a mutant red blood cells and reticulocytes, frequency of peripheral blood micronuclei, and the incidence of comet formation in liver. Toxicokinetic data collected on study Days 1 and 28 demonstrated systemic exposure to HOPO. Although there were no overt clinical signs, animals treated with HOPO showed a dose-related decrease in body weight gain. There were no increases observed in any of the genotoxicity endpoints assessed. The results from this study further support the conclusion that in the context of pharmaceutical synthesis, HOPO should not be considered a mutagenic impurity but rather controlled as a normal process-related impurity. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Óxidos N-Cíclicos/efeitos adversos , Mutagênese/efeitos dos fármacos , Mutagênicos/efeitos adversos , Piridinas/efeitos adversos , Animais , Eritrócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Testes de Mutagenicidade/métodos , Mutação/efeitos dos fármacos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Reticulócitos/efeitos dos fármacos
11.
Regul Toxicol Pharmacol ; 102: 53-64, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562600

RESUMO

The International Council for Harmonization (ICH) M7 guideline describes a hazard assessment process for impurities that have the potential to be present in a drug substance or drug product. In the absence of adequate experimental bacterial mutagenicity data, (Q)SAR analysis may be used as a test to predict impurities' DNA reactive (mutagenic) potential. However, in certain situations, (Q)SAR software is unable to generate a positive or negative prediction either because of conflicting information or because the impurity is outside the applicability domain of the model. Such results present challenges in generating an overall mutagenicity prediction and highlight the importance of performing a thorough expert review. The following paper reviews pharmaceutical and regulatory experiences handling such situations. The paper also presents an analysis of proprietary data to help understand the likelihood of misclassifying a mutagenic impurity as non-mutagenic based on different combinations of (Q)SAR results. This information may be taken into consideration when supporting the (Q)SAR results with an expert review, especially when out-of-domain results are generated during a (Q)SAR evaluation.


Assuntos
Contaminação de Medicamentos , Guias como Assunto , Mutagênicos/classificação , Relação Quantitativa Estrutura-Atividade , Indústria Farmacêutica , Órgãos Governamentais , Mutagênicos/toxicidade , Medição de Risco
12.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678766

RESUMO

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Assuntos
Simulação por Computador , Testes de Toxicidade/métodos , Toxicologia/métodos , Animais , Humanos
13.
Environ Mol Mutagen ; 59(4): 312-321, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29481708

RESUMO

2-Hydroxypyridine-N-oxide (HOPO) is a useful coupling reagent for synthesis of active pharmaceutical ingredients. It has been reported to be weakly mutagenic in the Ames assay (Ding W et al. []: J Chromatogr A 1386:47-52). According to the ICH M7 guidance (2014) regarding control of mutagenic impurities to limit potential carcinogenic risk, mutagens require control in drug substances such that exposure not exceeds the threshold of toxicological concern. Given the weak response observed in the Ames assay and the lack of any obvious structural features that could confer DNA reactivity we were interested to determine if the results were reproducible and investigate the role of potentially confounding experimental parameters. Specifically, Ames tests were conducted to assess the influence of compound purity, solvent choice, dose spacing, toxicity, type of S9 (aroclor vs phenobarbital/ß-napthoflavone), and lot variability on the frequency of HOPO induced revertant colonies. Initial extensive testing using one lot of HOPO produced no evidence of mutagenic potential in the Ames assays. Subsequent studies with four additional lots produced conflicting results, with an ∼2.0-fold increase in revertant colonies observed. Given the rigor of the current investigation, lack of reproducibility between lots, and the weak increase in revertants, it is concluded that HOPO is equivocal in the bacterial reverse mutation assay. It is highly unlikely that HOPO poses a mutagenic risk in vivo; therefore, when it is used as a reagent in pharmaceutical synthesis, it should not be regarded as a mutagenic impurity, but rather a normal process related impurity. Environ. Mol. Mutagen. 59:312-321, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Óxidos N-Cíclicos/toxicidade , Testes de Mutagenicidade/normas , Piridinas/toxicidade , Bactérias/efeitos dos fármacos , Óxidos N-Cíclicos/química , Piridinas/química , Reprodutibilidade dos Testes
14.
Regul Toxicol Pharmacol ; 91: 68-76, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29061373

RESUMO

The ICH M7 Guideline requires low level control of mutagenic impurities in pharmaceutical products to minimize cancer risk in patients (ICHM7, 2014). Bacterial mutagenicity (Ames) data is generally used to determine mutagenic and possible carcinogenic potential of compounds. Recently, a publication on experiences of using two in silico systems to identify potentially mutagenic impurities highlighted the importance of performing a critical review of published Ames data utilized as part of a mutagenicity assessment of impurities (Greene et al., 2015). Four compounds (2-amino-5-hydroxybenzoic acid, 2-amino-3-chlorobenzoic acid, methyl 2-amino-4-chlorobenzoate and 4-morpholinopyridine) reported mutagenic were identified in a two system in silico assessment and expert review of the structuresas non-mutagenic. Likely reasons for mutagenicity could not be identified and the purity of the compounds tested was proposed. In the current investigation, the purest available sample of the four compounds was tested in an OECD-compliant Ames test. The compounds were all found to be non-mutagenic. Possible reasons for the discrepancy between previously reported and current results are discussed. Additionally, important points to consider when conducting an expert review of available Ames data are provided particularly in cases where reported Ames results are discrepant with a two system in silico assessment.


Assuntos
Mutagênicos/química , Preparações Farmacêuticas/química , Animais , Simulação por Computador , Contaminação de Medicamentos , Escherichia coli/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Ratos , Salmonella typhimurium/efeitos dos fármacos
15.
Regul Toxicol Pharmacol ; 77: 13-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26877192

RESUMO

The ICH M7 guideline describes a consistent approach to identify, categorize, and control DNA reactive, mutagenic, impurities in pharmaceutical products to limit the potential carcinogenic risk related to such impurities. This paper outlines a series of principles and procedures to consider when generating (Q)SAR assessments aligned with the ICH M7 guideline to be included in a regulatory submission. In the absence of adequate experimental data, the results from two complementary (Q)SAR methodologies may be combined to support an initial hazard classification. This may be followed by an assessment of additional information that serves as the basis for an expert review to support or refute the predictions. This paper elucidates scenarios where additional expert knowledge may be beneficial, what such an expert review may contain, and how the results and accompanying considerations may be documented. Furthermore, the use of these principles and procedures to yield a consistent and robust (Q)SAR-based argument to support impurity qualification for regulatory purposes is described in this manuscript.


Assuntos
Testes de Carcinogenicidade/métodos , Dano ao DNA , Mineração de Dados/métodos , Mutagênese , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Toxicologia/métodos , Animais , Testes de Carcinogenicidade/normas , Simulação por Computador , Bases de Dados Factuais , Fidelidade a Diretrizes , Guias como Assunto , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Mutagenicidade/normas , Mutagênicos/química , Mutagênicos/classificação , Formulação de Políticas , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Toxicologia/legislação & jurisprudência , Toxicologia/normas
16.
Regul Toxicol Pharmacol ; 73(1): 367-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248005

RESUMO

The ICH M7 guidelines for the assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals allows for the consideration of in silico predictions in place of in vitro studies. This represents a significant advance in the acceptance of (Q)SAR models and has resulted from positive interactions between modellers, regulatory agencies and industry with a shared purpose of developing effective processes to minimise risk. This paper discusses key scientific principles that should be applied when evaluating in silico predictions with a focus on accuracy and scientific rigour that will support a consistent and practical route to regulatory submission.


Assuntos
Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Simulação por Computador/normas , DNA/química , Contaminação de Medicamentos/prevenção & controle , Mutagênicos , Relação Quantitativa Estrutura-Atividade
17.
Regul Toxicol Pharmacol ; 72(2): 335-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25980641

RESUMO

The International Conference on Harmonization (ICH) M7 guidance for the assessment and control of DNA reactive impurities in pharmaceutical products includes the use of in silico prediction systems as part of the hazard identification and risk assessment strategy. This is the first internationally agreed guidance document to include the use of these types of approaches. The guideline requires the use of two complementary approaches, an expert rule-based method and a statistical algorithm. In addition, the guidance states that the output from these computer-based assessments can be reviewed using expert knowledge to provide additional support or resolve conflicting predictions. This approach is designed to maximize the sensitivity for correctly identifying DNA reactive compounds while providing a framework to reduce the number of compounds that need to be synthesized, purified and subsequently tested in an Ames assay. Using a data set of 801 chemicals and pharmaceutical intermediates, we have examined the relative predictive performances of some popular commercial in silico systems that are in common use across the pharmaceutical industry. The overall accuracy of each of these systems was fairly comparable ranging from 68% to 73%; however, the sensitivity of each system (i.e. how many Ames positive compounds are correctly identified) varied much more dramatically from 48% to 68%. We have explored how these systems can be combined under the ICH M7 guidance to enhance the detection of DNA reactive molecules. Finally, using four smaller sets of molecules, we have explored the value of expert knowledge in the review process, especially in cases where the two systems disagreed on their predictions, and the need for care when evaluating the predictions for large data sets.


Assuntos
Contaminação de Medicamentos , Mutagênicos/análise , Software , Algoritmos , Simulação por Computador , Medição de Risco
18.
Mutagenesis ; 30(3): 325-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25820171

RESUMO

The Pig-a assay has rapidly gained international interest as a useful tool for assessing the mutagenic potential of compounds in vivo. Although a large number of compounds, including both mutagens and non-mutagens, have been tested in the rat Pig-a assay in haematopoietic cells, there is limited understanding of how perturbations in haematopoiesis affect assay performance. Of particular concern is the possibility that regenerative haematopoiesis alone, without exposure to a genotoxic agent, could result in elevated Pig-a mutant cell frequencies. To address this concern, Wistar-Han rats were dosed by oral gavage with a non-genotoxic haemolytic agent, 2-butoxyethanol (2-BE). Dose levels ranging from 0 to 450 mg/kg were tested using both single administration and 28-day treatment regimens. Haematology parameters were assessed at minimum within the first 24h of treatment and 8 days after the final administration. Pig-a mutant frequencies were assessed on Days 15 and ~30 for both treatment protocols and also on Days 43 and 57 for the 28-day protocol. Even at doses of 2-BE that induced marked intravascular lysis and strong compensatory erythropoiesis, the average Pig-a mutant phenotype red blood cell and reticulocyte frequencies were within the historical vehicle control distribution. 2-BE therefore showed no evidence of in vivo mutagenicity in these studies. The data suggest that perturbations in haematopoiesis alone do not lead to an observation of increased mutant frequency in the Pig-a assay.


Assuntos
Eritropoese/efeitos dos fármacos , Etilenoglicóis/toxicidade , Hemolíticos/toxicidade , Proteínas de Membrana/genética , Mutagênicos/toxicidade , Animais , Análise Mutacional de DNA , Genes Reporter , Masculino , Mutagênese , Testes de Mutagenicidade , Mutação , Ratos Wistar , Reticulócitos/efeitos dos fármacos
19.
Environ Mol Mutagen ; 56(3): 322-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25229874

RESUMO

Understanding the mutagenic dose response could prove beneficial in the management of pharmaceutically relevant impurities. For most alkyl ester impurities, such as isopropyl methanesulfonate (IPMS), little in vivo mutagenicity data exist for dose analysis. The likelihood of a sublinear dose response for IPMS was assessed by comparing the Swain Scott constant, the SN 1/SN 2 reaction mechanism and the O(6) :N(7) guanine adduct ratio to that of more well-known alkyl esters. Based on available information, IPMS was predicted to have a mutagenic profile most like ethyl nitrosourea. To test this hypothesis, mature male Wistar Han rats were administered IPMS using acute (single administration at 3.5 to 56 mg/kg) or subchronic (28 days at 0.125 to 2 mg/kg/day) exposures. The in vivo Pig-a mutation assay was used to identify mutant phenotype reticulocyte (Ret) and red blood cell (RBC) populations. The maximum mutant response occurred approximately 15 and 28 days after the last dose administration in the mutant Ret and RBC populations respectively in the acute study and on Day 29 and 56 in the mutant Ret and RBC populations, respectively, in the subchronic study. A comparison of RBC mutant frequencies from acute and subchronic protocols suggests a sublinear response; however, this was not substantiated by statistical analysis. A No Observed Effect Level (NOEL) of 0.25 mg/kg/day resulted in a Permitted Daily Exposure equivalent to the Threshold of Toxicological Concern. An estimate of the NOEL based on the previously mentioned factors, in practice, would have pre-empted further investigation of the potent mutagen IPMS.


Assuntos
Eritrócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Mesilatos/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Reticulócitos/efeitos dos fármacos , Animais , Antígenos CD59/análise , Eritrócitos/metabolismo , Masculino , Mesilatos/administração & dosagem , Testes para Micronúcleos , Testes de Mutagenicidade/métodos , Mutagênicos/administração & dosagem , Nível de Efeito Adverso não Observado , Ratos , Ratos Wistar , Reticulócitos/metabolismo
20.
Environ Mol Mutagen ; 55(6): 492-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24599777

RESUMO

Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig-a mutation assay and compared with other well-established in vivo genotoxicity endpoints. Male Sprague-Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre-dose (Day 1) and at various time points up to Day 105. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RET(CD59-) on Day 29 and of RBC(CD59-) on Day 55. The lowest dose producing a statistically significant increase of RET(CD59-) was 12.5 mg/kg on Day 55 and 25 mg/kg for RBC(CD59-) on Day 55. EMS also induced significant increases in % micronucleated RETs (MN-RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBC(CD59-) and/or RET(CD59-) in the Pig-a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints.


Assuntos
Ensaio Cometa/métodos , Metanossulfonato de Etila/toxicidade , Proteínas de Membrana/genética , Testes para Micronúcleos/métodos , Animais , Colo/citologia , Colo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Eritrócitos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Masculino , Proteínas de Membrana/efeitos dos fármacos , Taxa de Mutação , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...