Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38066687

RESUMO

The physical and chemical characteristics of the bedrock, along with the geological and hydrological conditions of karst caves may influence the taxonomic and functional diversity of prokaryotes. Most studies so far have focused on microbial communities of caves including only a few samples and have ignored the chemical heterogeneity of different habitat types such as sampling sites, dripping water, carbonate precipitates, cave walls, cave sediment and surface soils connected to the caves. The aim of the present study was to compare the morphology, the composition and physiology of the microbiota in caves with similar environmental parameters (temperature, host rock, elemental and mineral composition of speleothems) but located in different epigenic karst systems. Csodabogyós Cave and Baradla Cave (Hungary) were selected for the analysis of bacterial and archaeal communities using electron microscopy, amplicon sequencing, X-ray diffraction, and mass spectroscopic techniques. The microbial communities belonged to the phyla Pseudomonadota, Acidobacteriota, Nitrospirota and Nitrososphaerota, and they showed site-specific variation in composition and diversity. The results indicate that morphological and physiological adaptations provide survival for microorganisms according to the environment. In epigenic karst caves, prokaryotes are prone to increase their adsorption surface, cooperate in biofilms, and implement chemolithoautotrophic growth with different electron-donors and acceptors available in the microhabitats.


Assuntos
Cavernas , Microbiota , Cavernas/microbiologia , Hungria , Bactérias/genética , Archaea/genética , Microbiota/genética
3.
Environ Sci Pollut Res Int ; 30(56): 118724-118735, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917265

RESUMO

The pattern of arsenic (As) uptake at different developmental stages in plants and its consequent influence on the growth of plants was investigated in bean and lettuce. Further, the human health risk from the consumption of these As-laced vegetables was determined. The irrigation water was contaminated with As at concentrations of 0.1, 0.25, and 0.5 mg/L. The As concentration in the plant parts (root, stem, leaves, and flower/fruit) was determined in bean at the young, flowering, and fruiting stages and lettuce at the young and mature stages. At the different growth stages, As had an impact on the biomass of bean and lettuce plant parts, but none of the biomass changes were significant (p>0.05). The increase in As concentration of the irrigation water elevated the As concentration of plant parts of both plants at all growth stages, with the exception of the bean fruit. The As concentration in the developmental stages was in the order: lettuce (young>mature) and bean (fruiting>young>flowering). In lettuce, the transfer factor was higher at the young stage (0.09-0.19, in the control and 0.1 mg/L As treatment), while in bean, it was highest at the flowering stage (0.09-0.41, in all treatments). In the edible part, lettuce possessed substantially elevated As concentrations (0.30, 0.61, and 1.21 mg/kg DW) compared to bean (0.008, 0.005, and 0.022 mg/kg DW) at As treatments of 0.1, 0.25, and 0.5 mg/L, respectively, and posed significant health risks at all applied As concentrations.


Assuntos
Arsênio , Lactuca , Humanos , Verduras , Folhas de Planta , Água
4.
Heliyon ; 9(9): e20120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809789

RESUMO

The detection of non-point pollution in large rivers requires high-frequency sampling over a longer period of time, which, however presumably provides data with large spatial and temporal variance. Variability may mean that data sets recorded upstream and downstream from a densely populated area overlap, suggesting at first glance that the urban area did not affect water quality. This study presents a simple way to explore trend-like effects of non-point pollution in the Danube based on data that varied strongly in space and time. For one year, biweekly sampling was carried out upstream and downstream from a large city with negligible emission of untreated wastewater and the surrounding settlements, industrial and agricultural areas. Although most of the values of the 34 examined physicochemical characteristics fell within the range of data previously published for the Danube, and the mean values of all parameters indicated unpolluted surface water, different water quality was revealed upstream and downstream from the metropolitan area at each sampling time. Since the physicochemical characteristics causing the separation also differed from time to time, univariate tests and consensus ordination were used to determine which variables changed similarly during most of the examined period. With this evaluation method, several diffuse pollutants of anthropogenic origin contaminating the Danube in the long term were identified, such as nitrogen, phosphorus, sulphate, chloride, potassium and vanadium. The results demonstrated that trend-like effects of non-point pollution can be detected even in a large river, where physicochemical measurements can vary strongly in space and time.

5.
Sci Rep ; 13(1): 12543, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532748

RESUMO

Due to increased manufacture and recycling of lithium batteries across the world, we may anticipate a rise in lithium pollution in the aquatic environment and drinking water reservoirs. In order to investigate the current status regarding the lithium content in Hungarian tap waters, samples were collected from the public drinking water supply systems of 19 county seats in Hungary during seasonally selected times. Depending on the water sources, such as bank-filtrated river water, surface water from open reservoirs, and groundwater, the lithium concentrations varied between 0.90-4.23, 2.12-11.7 and 1.11-31.4 µg/L, respectively, while the median values were 3.52, 5.02 and 8.55 µg/L, respectively. The lithium concentration in the bottled Hungarian mineral waters was also determined since the daily intake of lithium can be influenced by the consumption of mineral waters. The concentrations ranged from 4.2 to 209 µg/L, while the median value was only 17.8 µg/L. Additionally, a correlation was only found between lithium and potassium concentrations. The lithium concentration was also assessed at ten sampling locations in the Hungarian segment of the Danube River since the Danube water is also a water source for additional drinking water utilities using bank filtration technology. The mean and median lithium concentrations were 2.78 and 2.64 µg/L, respectively.


Assuntos
Água Potável , Águas Minerais , Poluentes Químicos da Água , Hungria , Lítio , Rios , Abastecimento de Água , Águas Minerais/análise , Minerais , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 897: 166094, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37582445

RESUMO

Increasing metal(loid) contamination in urban soils and its impact on soil microbial community have attracted considerable attention. In the present study, the physicochemical parameters and the effects of twelve metal(loid) pollution on soil microbial diversity, their ecotoxic effects, and human health risk assessment in urban soils with different industrial background were studied in comparison with an unpolluted forest soil sample. Results showed that urban soils were highly contaminated, and metal(loid) contamination significantly influenced structure of the soil microbial communities. In all samples the bacterial community was dominated by Proteobacteria, and on the level of phyla characteristic differences were not possible to observe between polluted and control sampling sites. However, clear differences emerged at class and genus level, where several rare taxa disappeared from contaminated urban soils. Simper test results showed that there is 71.6 % bacterial OTU and 9.5 % bacterial diversity dissimilarity between polluted and control samples. Ratio of Patescibacteria, Armatimonadetes, Chlamydiae, Fibrobacteres, and Gemmatimonadetes indicated a significant (p < 0.05) positive correlation with soil Zn, Cr, Pb, Sn, Cu, Mn content, suggest that metal(loid)s strongly influence the structure of microbial community. In contrast, the presence of metal(loid) contamination in urban soils has been found to significantly reduce the population of Archaeal communities. This can be attributed to the depletion of organic matter caused by contamination that reached a minimum of 0.5 m/m% for nitrate and 0.9 m/m% for total organic carbon. The values of urban soil pH were close to neutral, ranging from 5.9 to 8.3. The findings of ecotoxicology test are alarming, as all the studied urban soil sites were cytotoxic to soil microorganisms, and in one site metal(loid) contamination reached genotoxic level. Moreover, all the metal(loid) contaminated sites pose severe and persistent health risk to children, highlighting the urgent need for effective measures to mitigate metal(loid) pollution in urban areas.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Criança , Humanos , Solo/química , Poluentes do Solo/análise , Metais/análise , Poluição Ambiental , Bactérias , Metais Pesados/análise , Monitoramento Ambiental
7.
PLoS One ; 17(10): e0275589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194606

RESUMO

An important challenge for mankind today is to find a plant-based source of iodine, instead of table salt, which would provide the recommended daily dosage of iodine. The aim of this work was to study the accumulation of iodine and the physiochemical changes in bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.) irrigated with iodine-containing water. Applying iodine at concentration of 0.5 mg L-1 resulted 51, 18, and 35% decrement in biomass of bean fruit, while in pea fruit, a 13% reduction and a 3 and 2% increment were observed when the plants were cultivated in sand, sandy silt, and silt, respectively. The highest iodine concentrations in the bean and pea fruits were detected in plants cultivated in silt soil with concentration of 0.5 mg I- L-1 and amounted to 1.6 and 0.4 mg kg-1, respectively. In presence of iodine at concentration of 0.5 mg L-1, the concentration of magnesium, phosphorous, manganese and iron increased in the bean fruit, while in the case of pea, at iodine concentration above 0.1 mg L-1 the uptake of these nutrients were hampered. Based on these facts, the iodized bean can be recommended as a possible food source to enhance the iodine intake.


Assuntos
Iodo , Phaseolus , Biofortificação , Iodetos , Ferro , Magnésio , Manganês , Pisum sativum , Areia , Cloreto de Sódio na Dieta , Solo , Água
8.
Sci Total Environ ; 808: 152160, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864023

RESUMO

Small streams are crucial but vulnerable elements of ecological networks. To better understand the occurrence of pharmaceutically active compounds (PhACs) in streams, this study focused on the occurrence, distribution, and environmental risk of 111 PhACs and 7 trace elements based on a total of 141 water and sediment samples from small streams located in the urbanizing region of Budapest, Hungary. Eighty-one PhACs were detected in the aqueous phase, whereas sixty-two compounds were detected in the sediment. Carbamazepine (CBZ) was the most frequently identified PhAC in water, and was found in 91.5% of all samples. However, the highest concentrations were measured for lamotrigine (344.8 µg·L-1) and caffeine (221.4 µg·L-1). Lidocaine was the most frequently occurring PhAC in sediment (73.8%), but the maximum concentrations were detected for CBZ (395.9 ng·g-1) and tiapride (187.7 ng·g-1). In both water and sediment, more PhACs were found downstream of the wastewater treatment plants (WWTPs) than in the samples not affected by treated wastewater, even though no relationship was observed between the total amount of treated wastewater and the number of detected PhACs. The PhAC concentrations were also independent of the distance from the WWTP effluents. PhAC-polluted samples were detected upstream of the WWTPs, thereby suggesting the relevance of diffuse emissions in addition to WWTP outlets. The most frequently detected PhACs in the sediment were usually also present in the water samples collected at the same place and time. The varying concentrations of PhACs and the fluctuating water-sediment properties resulted in a lack of correlation between the general chemical properties and the concentrations of PhACs, which makes it difficult to predict PhAC contamination and risks in urbanized small streams. The environmental risk assessment indicated that diclofenac had the highest risk in the sampling area.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Urbanização , Águas Residuárias , Água , Poluentes Químicos da Água/análise
9.
PLoS One ; 16(11): e0258502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34723976

RESUMO

Recent animal studies, as well as quantitative sodium MRI observations on humans demonstrated that remarkable amounts of sodium can be stored in the skin. It is also known that excess sodium in the tissues leads to inflammation in various organs, but its role in dermal pathophysiology has not been elucidated. Therefore, our aim was to study the effect of dietary salt loading on inflammatory process and related extracellular matrix (ECM) remodeling in the skin. To investigate the effect of high salt consumption on inflammation and ECM production in the skin mice were kept on normal (NSD) or high salt (HSD) diet and then dermatitis was induced with imiquimod (IMQ) treatment. The effect of high salt concentration on dermal fibroblasts (DF) and peripheral blood mononuclear cells (PBMC) was also investigated in vitro. The HSD resulted in increased sodium content in the skin of mice. Inflammatory cytokine Il17 expression was elevated in the skin of HSD mice. Expression of anti-inflammatory Il10 and Il13 decreased in the skin of HSD or HSD IMQ mice. The fibroblast marker Acta2 and ECM component Fn and Col1a1 decreased in HSD IMQ mice. Expression of ECM remodeling related Pdgfb and activation phosphorylated (p)-SMAD2/3 was lower in HSD IMQ mice. In PBMCs, production of IL10, IL13 and PDGFB was reduced due to high salt loading. In cultured DFs high salt concentration resulted in decreased cell motility and ECM production, as well. Our results demonstrate that high dietary salt intake is associated with increased dermal pro-inflammatory status. Interestingly, although inflammation induces the synthesis of ECM in most organs, the expression of ECM decreased in the inflamed skin of mice on high salt diet. Our data suggest that salt intake may alter the process of skin remodeling.


Assuntos
Dermatite/patologia , Derme/patologia , Imiquimode/efeitos adversos , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Biomarcadores/metabolismo , Peso Corporal , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Probióticos/metabolismo
10.
Plants (Basel) ; 10(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685895

RESUMO

Additional Selenium (Se) intake may be recommended in areas of Se deficiency to prevent various human diseases. One possibility for this is biofortification. In this experiment, the effect of irrigation water containing 100 and 500 µg L-1 Se, in the form of Na2SeO4, on green bean, cabbage, potato and tomato was investigated in a greenhouse pot experiment with sand, silty sand and silt soils. The chlorophyll content index was usually improved by Se and was significantly higher in potato in sand and silty sand and in tomato in silty sand and silt soils. The Se content of edible plant parts increased 63-fold in the 100 µg L-1 Se treatment and almost 400-fold in the 500 µg L-1 Se treatment, averaged over the four species and the three soils. Irrigation water with a Se content of 100 µg L-1 may be suitable for the production of functional food in the case of green beans, potatoes and tomatoes. However, due to its greater Se accumulation, cabbage should only be irrigated with a lower Se concentration. The use of Se-enriched irrigation water might be a suitable method for Se biofortification without a significant reduction in plant biomass production and without a remarkable modification of other macro- and microelement contents.

11.
Front Plant Sci ; 12: 658892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194449

RESUMO

The most important environmental source of boron (B) contamination is irrigation water. The data on the effect of B on the elemental composition in the edible parts of vegetables are scarce. A greenhouse pot experiment investigated the effect of irrigation water containing 0.1 and 0.5 mg/L B on the biomass, elemental (e.g., B, Mg, K, Fe, Cu, and Zn) composition, and photosynthetic parameters of tomato (Solanum lycopersicum), green bean (Phaseolus vulgaris), potato (Solanum tuberosum), and cabbage (Brassica oleracea) plants grown on 10 kg of sand, silty sand, or silty soil. The biomass of the edible part was unaffected by B treatment. The soil type determined the effect of B irrigation on the elemental composition of vegetables. The B content increased by 19% in tomatoes grown on silty soil. The 0.1 mg/L B treatment facilitated tomato fruit ripening on all soils, and the 0.5 mg/L B treatment doubled its chlorophyll content index (CCI) on silty soil. The 0.5 mg/L B treatment negatively affected the nutritional value of green beans on all soils, decreasing the Fe and K contents by an average of 83 and 34%, respectively. The elemental composition of potato was unaffected by the treatments, but the CCI of potato leaves increased in the 0.5 mg/L B treatment by 26%. The B content was increased by 39% in cabbages grown on light-textured soils. In conclusion, B concentration of up to 0.5 mg/L in irrigation water had no significant beneficial or adverse effect on the investigated vegetables, but 0.1 mg/L B treatment could shorten tomato fruit maturation time on B-poor soils. The B levels in vegetables remained suitable for human consumption.

12.
Sci Total Environ ; 793: 148300, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174614

RESUMO

Waterbirds as nutrient vectors can cause high phosphorus loading in shallow inland aquatic ecosystems. The main goal of this study was to determine the causal relationships between the characteristic physico-chemical properties of intermittent (temporary) alkaline soda pan (playa) ecosystems and specific (surface and volume-related) P loading of waterbirds by in situ field investigation, estimation as well as laboratory experiments using standard methods. In addition, our aim was to estimate the contribution of groundwater and precipitation to the total phosphorus pool of soda pans in Hungary. The estimated high specific external P loading of waterbirds (mean: 185 mg P/m2/y, 3.32 mg P/L/year) can explain the majority of the hypertrophic TP pool (mean: 5.17 mg/L, 64%) in soda pans, which is mediated by large-bodied herbivorous (e.g. geese and ducks) and medium-bodied omnivorous (e.g. gulls) waterbirds, who are important external nutrient importers and major phosphorus source. The results also confirm the hypothesis that groundwater (3%) and precipitation (5%) together account for a smaller estimated (8% in this study) contribution to the hypertrophic TP pool in soda pans, while the contribution of waterbirds (64% in this study) to the TP is much higher (64-100%). In this study, the remaining part of TP (maximum 28%) pool can be explained by internal P sources. Soda pans are characterized by physical and chemical characteristics coupled with high densities of waterbirds, as biotic mediators of external P sources, which together cause the maintenance of high concentrations of P-forms. The extreme guanotrophication by high P loading of herbivorous waterbirds causing a hypertrophic state is in contradiction with the limited primary production of natural soda pans. This unique phenomenon can be explained by the multiple impact of prevailing extreme physico-chemical drivers (intermittent hydrological cycle, shallow water depth, high turbidity, salinity, alkalinity) and by the specific nutrient cycle of these alkaline soda ecosystems.


Assuntos
Água Subterrânea , Fósforo , Ecossistema , Salinidade , Água
13.
Environ Res ; 197: 111098, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826942

RESUMO

This study was carried out to determine the effect of arsenic on tomato and cabbage cultivated in sand, sandy silt, and silt soil, and irrigated with water containing arsenic at concentrations 0.05 and 0.2 mg/L. Increasing arsenic in irrigation water did not affect the photosynthetic machinery. The chlorophyll content index increased in case of all soils and was dependent on the soil nitrogen, phosphorous, and plant biomass. Arsenic concentrations of 0.05 and 0.2 mg/L did not display any phytotoxic symptoms other than reduction in biomass in some cases. In cabbage, arsenic treatment of 0.2 mg/L increased the overall plant biomass production, while in tomato there was a decrease in aerial part and fruit biomass. The biomass production of both plants treated with different concentrations of arsenic, in the three soils was in the following order: silt > sand > sandy silt. Increase of arsenic in the irrigation water resulted in increase in arsenic concentration in the root and aerial part of both plants, at the same cultivation parameters. But tomato fruits displayed a decrease in arsenic accumulation with higher arsenic treatment. In both plants, the arsenic concentration in the plant parts changed in the following order: root > aerial part > fruit. Cabbage accumulated approximately twenty-fold more arsenic in the edible part (0.10-0.25 mg/kg DW) as compared to tomato (0.006-0.011 mg/kg DW) and displayed a good correlation with soil extractable arsenic. When cabbage was cultivated in three different soils applying the same irrigation water, it accumulated arsenic in the following order: sand > sandy silt > silt (p < 0.001 at 0.05 mg/L and p < 0.01 at 0.2 mg/L arsenic treatment). In tomato, the difference in arsenic accumulation among different soil types was highly significant (p < 0.001) but the accumulation pattern varied with the arsenic treatment applied. Sandy soil with the lowest total soil arsenic (4.32 mg/kg) resulted in the highest arsenic concentration in both plants. Among all soils and plants, the transfer factors and bioaccumulation factors were higher in sandy soil, and in cabbage. The estimated daily intake and hazard quotient values for arsenic were lower than 1 in all cases, implying no non-cancerous health risks at the arsenic concentrations applied in our study. Among nutrients only P showed a slight decline with increasing arsenic concentration while all other elements (Mg, K, Ca, S, Si, Fe, Mn, Cu, Zn) did not display any significant changes.


Assuntos
Arsênio , Brassica , Poluentes do Solo , Solanum lycopersicum , Arsênio/análise , Arsênio/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Água
14.
Chemosphere ; 275: 130080, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33667764

RESUMO

For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80-100% removal was accomplished for five and 40-80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30-45 µg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2- nor NO3- was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxirredução , Tecnologia , Raios Ultravioleta , Águas Residuárias , Poluentes Químicos da Água/análise
15.
PeerJ ; 9: e10642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614266

RESUMO

BACKGROUND: In recent years, there are growing concerns about pharmaceutically active compounds (PhACs) in natural ecosystems. These compounds have been found in natural waters and in fish tissues worldwide. Regarding their growing distribution and abundance, it is becoming clear that traditionally used risk assessment methodologies and ecotoxicological studies have limitations in several respects. In our study a new, combined approach of environmental impact assesment of PhACs has been used. METHODS: In this study, the constant watercourses of the suburban region of the Hungarian capital (Budapest) were sampled, and the body shape and scale shape of three fish species (roach Rutilus rutilus, chub Squalius cephalus, gibel carp Carassius gibelio) found in these waters were analyzed, based on landmark-based geometric morphometric methods. Possible connections were made between the differences in body shape and scale shape, and abiotic environmental variables (local- and landscape-scale) and measured PhACs. RESULTS: Significant connections were found between shape and PhACs concentrations in several cases. Despite the relatively large number of compounds (54) detected, citalopram, propranolol, codeine and trimetazidine significantly affected only fish body and scale shape, based on their concentrations. These four PhACs were shown to be high (citalopram), medium (propranolol and codeine), and low (trimetazidine) risk levels during the environmental risk assessment, which were based on Risk Quotient calculation. Furthermore, seven PhACs (diclofenac, Estrone (E1), tramadol, caffeine 17α-Ethinylestradiol (EE2), 17α-Estradiol (aE2), Estriol (E3)) were also categorized with a high risk level. However, our morphological studies indicated that only citalopram was found to affect fish phenotype amongst the PhACs posing high risk. Therefore, our results revealed that the output of (traditional) environmental/ecological risk assessment based on ecotoxicological data of different aquatic organisms not necessarily show consistency with a "real-life" situation; furthermore, the morphological investigations may also be a good sub-lethal endpoint in ecotoxicological assessments.

16.
Front Plant Sci ; 11: 593047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362822

RESUMO

Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.

17.
Data Brief ; 32: 106062, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32775574

RESUMO

The present dataset provides data on the pharmaceutically active compounds (PhACs) concentrations measured in the Danube and the drinking water abstraction wells (DWAW) in the Budapest region. Grab samples were collected during five periods. One hundred and seven water samples from the Danube and ninety water samples from the relevant DWAWs were analyzed to quantify physical-chemical parameters, trace element concentrations, and one hundred and eleven PhACs, including pharmaceutical derivatives, illicit drugs, and alkaloids. The ion concentrations were measured using dual channel ion chromatography, spectrophotometric and titrimetric methods, and inductively coupled plasma mass spectrometry. PhACs concentrations were measured after solid-phase extraction applying supercritical fluid chromatography coupled with tandem mass spectrometry. Fifty-two PhACs were quantified in the Danube, and ten PhACs were present in >80% of the samples. Whereas thirty-two PhACs were quantified in the DWAWs. The present dataset is useful for further comparisons and meta-analyses.

18.
Environ Pollut ; 265(Pt A): 114893, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32544664

RESUMO

Surface waters are becoming increasingly contaminated by pharmaceutically active compounds (PhACs), which is a potential risk factor for drinking water quality owing to incomplete riverbank filtration. This study examined the efficiency of riverbank filtration with regard to 111 PhACs in a highly urbanized section of the river Danube. One hundred seven samples from the Danube were compared to 90 water samples from relevant drinking water abstraction wells (DWAW) during five sampling periods. The presence of 52 PhACs was detected in the Danube, the quantification of 19 agents in this section of the river was without any precedent, and 10 PhACs were present in >80% of the samples. The most frequent PhACs showed higher concentrations in winter than in summer. In the DWAWs, 32 PhACs were quantified. For the majority of PhACs, the bank filtration efficiency was >95%, and not influenced by concentrations measured in the river. For carbamazepine lidocaine, tramadol, and lamotrigine, low (<50%) filtration efficiency was observed; however, no correlations were observed between the concentrations detected in the Danube and in the wells. These frequently occurring PhACs in surface waters have a relatively even distribution, and their sporadic appearance in wells is a function of both space and time, which may be caused by the constantly changing environment and micro-biological parameters, the dynamic operating schedule of abstraction wells, and the resulting sudden changes in flow rates. Due to the changes in the efficiency of riverbank filtration in space and time, predicting the occurrence and concentrations of these four PhACs poses a further challenge to ensuring a safe drinking water supply.


Assuntos
Água Potável , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Filtração , Rios , Poços de Água
19.
Environ Sci Pollut Res Int ; 27(1): 399-410, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31792791

RESUMO

Despite the fact that there are tens of thousands of thermal baths in existence, knowledge about the occurrence of pharmaceutically active compounds (PhACs) in untreated thermal wastewater is very limited. Because used thermal water is typically legally discharged into surface waters without any treatment, the effluent poses environmental risks for the receiving water bodies. The aim of this study was to show the occurrence patterns and spatiotemporal characteristics of 111 PhACs in thermal wastewater. Six thermal water outflows of different thermal baths were tested in different seasons in the Budapest metropolitan region (Hungary), and diurnal analysis was performed. After solid-phase extraction, the samples were analysed and quantified by coupling supercritical fluid chromatography and mass spectrometry to perform simultaneous multi-residue drug analysis. The results confirm that water discharge pipes directly transport pharmaceuticals into surface water bodies; 34 PhACs were measured to be over the limit of quantification at least once, and 21 of them were found in more than one water sample. The local anaesthetic drug lidocaine, antiepileptic carbamazepine, analgesic derivative tramadol and illicit drug cocaine were detected in more than half of the samples. Caffeine, metoprolol and bisoprolol (cardiovascular drugs), benzoylecgonine (cocaine metabolite), diclofenac (NSAID), citalopram (antidepressant) and certain types of hormones also have a significant frequency of 30-50%. However, the occurrence and concentrations of PhACs vary according to the season and number/types of visitors. As demonstrated by the diurnal fluctuation, drug contamination of thermal waters can significantly vary, even for similar types of baths; furthermore, the quantity and types of some pollutants rapidly change in the discharged thermal wastewater.


Assuntos
Banhos , Monitoramento Ambiental , Drogas Ilícitas/análise , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Carbamazepina/análise , Diclofenaco , Contaminação de Medicamentos , Hungria , Estações do Ano , Extração em Fase Sólida , Águas Residuárias/química
20.
Int J Syst Evol Microbiol ; 69(3): 631-637, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30672727

RESUMO

Two alkaliphilic and moderately halophilic bacterial strains B16-10T and Z23-18 characterized by optimal growth at pH 9.0-10.0 and 5 % (w/v) NaCl, were isolated from the rhizosphere soil of the bayonet grass (Bolboschoenus maritimus) in the Kiskunság National Park, Hungary. Cells of both strains stained Gram-positive, were motile straight rods, and formed terminal, ellipsoidal endospores with swollen sporangia. The isolates were facultative anaerobic, catalase positive, oxidase negative. Both strains contained meso-diaminopimelic acid as diagnostic diaminoacid of the peptidoglycan. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone. Anteiso-C15 : 0, C16 : 1ω11c and iso-C14 : 0 were the major cellular fatty acids. The DNA G+C content of both strains was 35.8 mol%. The 16S rRNA gene based phylogenetic analysis revealed that the facultative anaerobic strains B16-10T and Z23-18 showed the highest similarities to the type strains of anaerobic Anaerobacillus isosaccharinicus NB2006T (98.7 and 99.1 %), A. macyae JMM-4T (98.2 and 98.4 %), A. alkalidiazotrophicus MS 6T (97.7 and 98.4 %), A. alkalilacustris Z-0521T (97.5 and 98.3 %) and A. arseniciselenatis DSM 15340T (97.5 and 98.2 %). However, the distinctive phenotypic and genetic results of this study confirmed that strains B16-10T and Z23-18 represent a novel species, for which the name Anaerobacillus alkaliphilus sp. nov. is proposed. The type strain is B16-10T (=DSM 29790T=NCAIM B 02608T).


Assuntos
Bacillaceae/classificação , Cyperaceae/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hungria , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...