Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 6(1): vdae049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680990

RESUMO

Background: Afatinib (BIBW2992; Gilotrif®) is a selective and irreversible inhibitor of the epidermal growth factor receptor (ErbB; EGFR) family. It inhibits EGFR, HER2, and HER4 phosphorylation, resulting in tumor growth inhibition and regression. This phase I dose-escalation trial of pulsatile afatinib examined the safety, drug penetration into the central nervous system, preliminary antitumor activity, and recommended phase II dose in patients with progressive or recurrent brain cancers. Methods: Afatinib was taken orally once every 4 days or once every 7 days depending on dose cohort, until disease progression or unacceptable toxicity. Results: A total of 24 patients received the investigational agent and were evaluable for safety analyses, and 21 patients were evaluable for efficacy. Dosing was administered at 80 mg every 4 days, 120 mg every 4 days, 180 mg every 4 days, or 280 mg every 7 days. A recommended phase II dose of pulsatile afatinib was established at 280 mg every 7 days as there were no dose-limiting toxicities in any of the dosing cohorts and all toxicities were deemed manageable. The most common drug-related toxicities were diarrhea, rash, nausea, vomiting, fatigue, stomatitis, pruritus, and limb edema. Out of the 21 patients evaluable for efficacy, 2 patients (9.5%) exhibited partial response based on Response Assessment in Neuro-Oncology criteria and disease stabilization was seen in 3 patients (14.3%). Conclusions: Afatinib taken orally was safe and well-tolerated up to 280 mg every 7 days in brain cancer patients.

2.
Chin Clin Oncol ; 9(6): 77, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33353366

RESUMO

Glioblastoma remains the most common malignant brain neoplasm in adults. The available therapies for treatment have only modestly extended survival. Traditional chemotherapy agents have shown only slight effectiveness in controlling this disease. The use of molecular profiling has allowed personalized medicine options to be explored for the care of these individuals. Targeted therapies have shown significant benefit in numerous other cancer types with survival being extended significantly. In glioblastoma, several promising markers have been identified including vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), and programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1). These targets have been shown to play a critical role in glioblastoma formation and proliferation. The pathways of these receptors have been elucidated in detail. This level of understanding has led to the a more robust understanding of possible mechanism of pathway modification. The targeting of these specific markers has led to the development of several selective therapies with additional therapies being evaluated. The clinical trials validating these markers have been promising but have yet to show a clear benefit in brain tumors. This identification of alternative methods to address these markers or identify additional targets may be the key to the fight against this disease. The molecular targeting of glioblastoma pathways may have significant impact on disease control and patient survival.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Medicina de Precisão
3.
Aquat Toxicol ; 190: 1-10, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28662416

RESUMO

The essential role of thyroid hormone (TH) signaling in mammalian development warrants the examination of man-made chemicals for its disruption. Among vertebrate species, the molecular components of TH signaling are highly conserved, including the thyroid hormone receptors (TRs), their heterodimer binding partners the retinoid-X receptors (RXRs), and their DNA recognition sequences (TREs). This molecular conservation allows examination of potential TH disruption in the tractable, in vivo model system of amphibian metamorphosis. Metamorphosis requires TH signaling for both instigation and progression, and it provides dramatic and well-characterized phenotypes involving different cell fates. Here we describe a quantitative, precocious-metamorphosis assay suite we developed using one-week post-fertilization (PF) Xenopus laevis tadpoles in order to assess disruption of TH signaling. Tadpoles at this developmental stage (Nieuwkoop-Faber (NF)-48) are competent to respond to TH hormone, although not yet producing TH, along many metamorphic pathways, and they are uniform in size. This allowed us to quantify changes in morphology associated with natural metamorphosis (e.g. gill and tail resorption, brain expansion, and craniofacial remodeling) after five days of treatment. Using the same tadpoles from morphological measurements, we quantified a 20-fold increase in TH-induced cellular proliferation in the rostral head region by whole-mount immunocytochemistry. At the molecular level, we used F3-generation tadpoles from a transgenic X. laevis line, which expresses luciferase under the control of a native TRE, to assess the ability of compounds to disrupt TR function. The luciferase reporter showed over 10-fold activation by physiologic concentrations of TH. We used the synthetic TR antagonist NH-3 to demonstrate the feasibility of our assay suite to measure inhibition of TH activity at the level of the receptor. Finally, we assessed the capabilities of suspected TH-disrupting chemicals tetrabrominated diphenyl ether 47 (BDE-47) and tetrabromobisphenol A (TBBPA). We found that BDE-47 displays general toxicity rather than TH disruption, as it did not increase brain width nor affect the TRE-luciferase reporter. However, TBBPA, a suspected TR antagonist, although not effective in antagonizing cell proliferation, significantly inhibited the TRE-luciferase reporter, suggesting that it bears closer scrutiny as a TH disruptor. Overall the assay suite has important advantages over the classical tadpole metamorphosis assays with respect to the uniformity of animal size, small test volume, reproducibility, and short test period. The assays are performed before endogenous TH production and free feeding start, which further reduces complexity and variability.


Assuntos
Disruptores Endócrinos/toxicidade , Larva/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/genética , Reprodutibilidade dos Testes , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...