Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
J Infect Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526342

RESUMO

In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E. coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E. coli (EAEC)-specific virulence factors. Here, we identified an E. coli O104:H4 isolate that carried a single nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E. coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E. coli O104:H4 virulence, primarily through an AggR-dependent mechanism.

2.
Nephrol Dial Transplant ; 39(4): 581-588, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891013

RESUMO

Antimicrobial resistance (AMR) has emerged as a significant global healthcare problem. Antibiotic use has accelerated the physiologic process of AMR, particularly in Gram-negative pathogens. Urinary tract infections (UTIs) are predominantly of a Gram-negative nature. Uropathogens are evolutionarily highly adapted and selected strains with specific virulence factors, suggesting common mechanisms in how bacterial cells acquire virulence and AMR factors. The simultaneous increase in resistance and virulence is a complex and context-dependent phenomenon. Among known AMR mechanisms, the plenitude of different ß-lactamases is especially prominent. The risk for AMR in UTIs varies in different patient populations. A history of antibiotic consumption and the physiology of urinary flow are major factors that shape AMR prevalence. The urinary tract is in close crosstalk with the microbiome of other compartments, including the gut and genital tracts. In addition, pharmacokinetic properties and the physiochemical composition of urinary compartments can contribute to the emergence of AMR. Alternatives to antibiotic treatment and a broader approach to address bacterial infections are needed. Among the various alternatives studied, antimicrobial peptides and bacteriophage treatment appear to be highly promising approaches. We herein summarize the present knowledge of clinical and microbiological AMR in UTIs and discuss innovative approaches, namely new risk prediction tools and the use of non-antibiotic approaches to defend against uropathogenic microbes.


Assuntos
Infecções Urinárias , Sistema Urinário , Humanos , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Infecções Urinárias/tratamento farmacológico
3.
Microorganisms ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36144292

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) can cause severe diarrheic in humans. To improve therapy options, a better understanding of EHEC pathogenicity is essential. The genetic manipulation of EHEC with classical one-step methods, such as the transient overexpression of the phage lambda (λ) Red functions, is not very efficient. Here, we provide a robust and reliable method for increasing recombineering efficiency in EHEC based on the transient coexpression of recX together with gam, beta, and exo. We demonstrate that the genetic manipulation is 3-4 times more efficient in EHEC O157:H7 EDL933 Δstx1/2 with our method when compared to the overexpression of the λ Red functions alone. Both recombineering systems demonstrated similar efficiencies in Escherichia coli K-12 MG1655. Coexpression of recX did not enhance the Gam-mediated inhibition of sparfloxacin-mediated SOS response. Therefore, the additional inhibition of the RecFOR pathway rather than a stronger inhibition of the RecBCD pathway of SOS response induction might have resulted in the increased recombineering efficiency by indirectly blocking phage induction. Even though additional experiments are required to unravel the precise mechanistic details of the improved recombineering efficiency, we recommend the use of our method for the robust genetic manipulation of EHEC and other prophage-carrying E. coli isolates.

4.
Gut Microbes ; 14(1): 2122667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36138514

RESUMO

Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) cause gastrointestinal infection and, in severe cases, hemolytic uremic syndrome which may lead to death. There is, to-date, no therapy for this infection. Stx induces ATP release from host cells and ATP signaling mediates its cytotoxic effects. Apyrase cleaves and neutralizes ATP and its effect on Stx and EHEC infection was therefore investigated. Apyrase decreased bacterial RecA and dose-dependently decreased toxin release from E. coli O157:H7 in vitro, demonstrated by reduced phage DNA and protein levels. The effect was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice infected with Stx2-producing E. coli O157:H7 were treated with apyrase intraperitoneally, on days 0 and 2 post-infection, and monitored for 11 days. Apyrase-treated mice developed disease two days later than untreated mice. Untreated infected mice lost significantly more weight than those treated with apyrase. Apyrase-treated mice exhibited less colonic goblet cell depletion and apoptotic cells, as well as lower fecal ATP and Stx2, compared to untreated mice. Apyrase also decreased platelet aggregation induced by co-incubation of human platelet-rich-plasma with Stx2 and E. coli O157 lipopolysaccharide in the presence of collagen. Thus, apyrase had multiple protective effects, reducing RecA levels, stx2 and toxin release from EHEC, reducing fecal Stx2 and protecting mouse intestinal cells, as well as decreasing platelet activation, and could thereby delay the development of disease.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Escherichia coli O157 , Microbioma Gastrointestinal , Trifosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Apirase/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/genética , Humanos , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga/metabolismo , Toxina Shiga/farmacologia , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Toxina Shiga II/farmacologia
5.
Biochemistry ; 61(20): 2188-2197, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36166360

RESUMO

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Aminoácidos/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19/genética , Mutação , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
6.
Virulence ; 13(1): 1423-1433, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35982607

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli , Fímbrias Bacterianas , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Células HeLa , Humanos , Intestinos/microbiologia , Camundongos , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade
7.
Part Fibre Toxicol ; 19(1): 21, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321750

RESUMO

BACKGROUND: The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS: Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS: The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Animais , Peso Corporal , Masculino , Metaboloma , Nanopartículas Metálicas/toxicidade , Ratos , Ratos Wistar , Dióxido de Silício/toxicidade , Prata
8.
Evol Med Public Health ; 10(1): 71-86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186295

RESUMO

BACKGROUND AND OBJECTIVES: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to effectively prevent and alleviate intestinal diseases. Despite the widespread medical application of EcN, we still lack basic knowledge about persistence and evolution of EcN outside the human body. Such knowledge is important also for public health aspects, as in contrast to abiotic therapeutics, probiotics are living organisms that have the potential to evolve. This study made use of experimental evolution of EcN in an insect host, the red flour beetle Tribolium castaneum, and its flour environment. METHODOLOGY: Using a serial passage approach, we orally introduced EcN to larvae of T.castaneum as a new host, and also propagated it in the flour environment. After eight propagation cycles, we analyzed phenotypic attributes of the passaged replicate EcN lines, their effects on the host in the context of immunity and infection with the entomopathogen Bacillus thuringiensis, and potential genomic changes using WGS of three of the evolved lines. RESULTS: We observed weak phenotypic differences between the ancestral EcN and both, beetle and flour passaged EcN lines, in motility and growth at 30°C, but neither any genetic changes, nor the expected increased persistence of the beetle-passaged lines. One of these lines displayed distinct morphological and physiological characteristics. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that EcN remains rather stable during serial passage in an insect. Weak phenotypic changes in growth and motility combined with a lack of genetic changes indicate a certain degree of phenotypic plasticity of EcN. LAY SUMMARY: For studying adaptation of the human probiotic Escherichia coli strain Nissle 1917, we introduced it to a novel insect host system and its environment using a serial passage approach. After passage, we observed weak phenotypic changes in growth and motility but no mutations or changes in persistence inside the host.

9.
ACS Synth Biol ; 11(2): 747-759, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35090122

RESUMO

Bacteria produce and react to interspecies signaling molecules in order to control the expression of genes that are particularly beneficial when they are expressed by a bacterial community. In addition to intraspecies communication, the signaling molecule autoinducer-2 (AI-2) can also serve for interspecies communication between Gram-positive and Gram-negative bacteria and is therefore of particular interest. The analysis and quantification of AI-2 are essential for understanding population density-dependent changes in bacterial behavior and pathogenicity. However, currently available bioassays for AI-2 quantification are rather complex, have narrow detection ranges, and are very sensitive to trace components of, for example, growth media. To facilitate and improve the detection of AI-2, we have developed an Escherichia coli biosensor-based assay that is sensitive, cheap, fast, robust, and reliable in the quantification of biologically active AI-2. The bioassay is based on an lsr promoter-fluorescent reporter gene fusion cassette that we chromosomally integrated in a biosensor strain, but the cassette can also be used in a low-copy number plasmid for the application in other Gram-negative bacterial species. We show here that AI-2 quantification was possible in a concentration range from 400 nM to 100 µM and that a critical interpretation of the kinetics of the measurements can reveal sugar interference. With the help of our biosensor strain, coculture experiments were done to test the capability and kinetics of AI-2 secretion by various Gram-negative bacteria in real time. Finally, calibration curves were used to calculate the absolute AI-2 concentration in cell-free bacterial samples.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioensaio , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas , Homosserina/metabolismo , Lactonas/metabolismo , Percepção de Quorum
10.
Curr Opin Insect Sci ; 49: 8-14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710642

RESUMO

Insects resist infection by natural selection that favors the survival and reproduction of the fittest phenotypes. Although the genetic mechanisms mediating the evolution of insect resistance have been investigated, little is known about the contribution of epigenetic mechanisms. Gene expression in response to a pathogen selection pressure is regulated by different mechanisms affecting chromatin plasticity. Whether transgenerational inheritance of genome-wide epigenetic marks contributes to the heritable manifestation of insect resistance is presently debated. Here, we review the latest works on the contributions of chromatin remodeling to insect immunity and adaptation to pathogens. We highlight DNA methylation, histone acetylation, and microRNAs in mediating the transgenerational inherited transcriptional reprogramming of defense-related gene expression and the evolution of insect resistance.


Assuntos
Epigênese Genética , Insetos , Animais , Metilação de DNA , Epigenômica , Genoma , Insetos/genética
11.
Glia ; 70(1): 35-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487573

RESUMO

Brain lymphatic endothelial cells (BLECs) constitute a group of loosely connected endothelial cells that reside within the meningeal layer of the zebrafish brain without forming a vascular tubular system. BLECs have been shown to readily endocytose extracellular cargo molecules from the brain parenchyma, however, their functional relevance in relation to microglia remains enigmatic. We here compare their functional uptake efficiency for several macromolecules and bacterial components with microglia in a qualitative and quantitative manner in 5-day-old zebrafish embryos. We find BLECs to be significantly more effective in the uptake of proteins, polysaccharides and virus particles as compared to microglia, while larger particles like bacteria are only ingested by microglia but not by BLECs, implying a clear distribution of tasks between the two cell types in the brain area. In addition, we compare BLECs to the recently discovered scavenger endothelial cells (SECs) of the cardinal vein and find them to accept an identical set of substrate molecules. Our data identifies BLECs as the first brain-associated SEC population in vertebrates, and demonstrates that BLECs cooperate with microglia to remove particle waste from the brain.


Assuntos
Células Endoteliais , Microglia , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Meninges , Peixe-Zebra
12.
Virulence, v. 13, n. 1, p. 1423-1433, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4482

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.

13.
Virulence ; 12(1): 3073-3093, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34923895

RESUMO

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Proteínas de Fímbrias/genética , Humanos , Masculino , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , alfa-Fetoproteínas
15.
Int J Med Microbiol ; 311(7): 151533, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425494

RESUMO

Hybrid Shiga toxin (Stx)-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains are phylogenetically positioned between STEC and UPEC and can cause both diarrhea and urinary tract infections (UTIs). However, their virulence properties and adaptation to different host milieu in comparison to canonical UPEC and STEC strains are unknown. We determined phenotypes of the STEC/UPEC hybrid with respect to virulence including acid resistance, motility, biofilm formation, siderophore production, and adherence to human colonic Caco-2 and bladder T24 cells and compared to phenotypes of commensal strain MG1655, UPEC strain 536, and STEC strains B2F1 and Sakai. Moreover, we assessed the adaptation of the hybrid to artificial urine medium (AUM) and simulated colonic environment medium (SCEM). Overall acid resistance at pH 2.5 was high except in strains B2F1 and hybrid 05-00787 which showed reduced and extremely low acid resistance, respectively. Motility was reduced in hybrid 05-00787 and 09-05501 but strong in the remaining hybrids. While some hybrids showed high biofilm formation in LB, overall biofilm formation in SCEM and AUM were low and non-existent, respectively. All strains tested showed siderophore activity at equilibrium. All strains except MG1655 adhered to Caco-2 cells with the hybrid having similar adherence when compared to 536 but exhibited 2 and 3 times lower adherence when compared to B2F1 and Sakai, respectively. All Stx-producing strains adhered stronger to T24 cells than strains 536 and MG1655. Overall growth in LB, SCEM and AUM was consistent within the hybrid strains, except hybrid 05-00787 which showed significantly different growth patterns. Our data suggest that the hybrid is adapted to both, the intestinal and extraintestinal milieu. Expression of phenotypes typical of intestinal and extraintestinal pathogens thereby supports its potential to cause diarrhea and UTI.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli Uropatogênica , Células CACO-2 , Proteínas de Escherichia coli/genética , Humanos , Fenótipo , Toxina Shiga/genética , Escherichia coli Uropatogênica/genética
16.
Chemistry ; 27(59): 14672-14680, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34324228

RESUMO

In this contribution we report on the synthesis, characterization and application of water-soluble zinc(II) phthalocyanines, which are decorated with four or eight umbelliferone moieties for photodynamic therapy (PDT). These compounds are linked peripherally to zinc(II) phthalocyanine by a triethylene glycol linker attached to pyridines, leading to cationic pyridinium units, able to increase the water solubility of the system. Beside their photophysical properties they were analyzed concerning their cellular distribution in human hepatocyte carcinoma (HepG2) cells as well as their phototoxicity towards HepG2 cells, Gram-positive (S. aureus strain 3150/12 and B. subtilis strain DB104) and Gram-negative bacteria (E. coli strain UTI89 and E. coli strain Nissle 1917). At low light doses and concentrations, they exhibit superb antimicrobial activity against Gram-positive bacteria as well as anti-tumor activity against HepG2. They are even capable to inactivate Gram-negative bacteria, whereas the dark toxicity remains low. These unique water-soluble compounds can be regarded as all-in-one type photosensitizers with broad applications ranges in the future.


Assuntos
Anti-Infecciosos , Compostos Organometálicos , Fotoquimioterapia , Escherichia coli , Humanos , Isoindóis , Fármacos Fotossensibilizantes/toxicidade , Staphylococcus aureus , Umbeliferonas , Água , Zinco , Compostos de Zinco
17.
Antibiotics (Basel) ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071539

RESUMO

The resistance of uropathogens to various antibiotics is increasing, but nitroxoline remains active in vitro against some relevant multidrug resistant uropathogenic bacteria. E. coli strains, which are among the most common uropathogens, are unanimously susceptible. Thus, nitroxoline is an option for the therapy of urinary tract infections caused by multiresistant bacteria. Since nitroxoline is active against bacteria in biofilms, it will also be effective in patients with indwelling catheters or foreign bodies in the urinary tract. Cotrimoxazole, on the other hand, which, in principle, can also act on bacteria in biofilms, is frequently inactive against multiresistant uropathogens. Based on phenotypic resistance data from a large number of urine isolates, structural characterisation of an MDR plasmid of a recent ST131 uropathogenic E. coli isolate, and publicly available genomic data of resistant enterobacteria, we show that nitroxoline could be used instead of cotrimoxazole for intervention against MDR uropathogens. Particularly in uropathogenic E. coli, but also in other enterobacterial uropathogens, the frequent parallel resistance to different antibiotics due to the accumulation of multiple antibiotic resistance determinants on mobile genetic elements argues for greater consideration of nitroxoline in the treatment of uncomplicated urinary tract infections.

18.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34128785

RESUMO

The bacterial genotoxin colibactin interferes with the eukaryotic cell cycle by causing dsDNA breaks. It has been linked to bacterially induced colorectal cancer in humans. Colibactin is encoded by a 54 kb genomic region in Enterobacteriaceae. The colibactin genes commonly co-occur with the yersiniabactin biosynthetic determinant. Investigating the prevalence and sequence diversity of the colibactin determinant and its linkage to the yersiniabactin operon in prokaryotic genomes, we discovered mainly species-specific lineages of the colibactin determinant and classified three main structural settings of the colibactin-yersiniabactin genomic region in Enterobacteriaceae. The colibactin gene cluster has a similar but not identical evolutionary track to that of the yersiniabactin operon. Both determinants could have been acquired on several occasions and/or exchanged independently between enterobacteria by horizontal gene transfer. Integrative and conjugative elements play(ed) a central role in the evolution and structural diversity of the colibactin-yersiniabactin genomic region. Addition of an activating and regulating module (clbAR) to the biosynthesis and transport module (clbB-S) represents the most recent step in the evolution of the colibactin determinant. In a first attempt to correlate colibactin expression with individual lineages of colibactin determinants and different bacterial genetic backgrounds, we compared colibactin expression of selected enterobacterial isolates in vitro. Colibactin production in the tested Klebsiella species and Citrobacter koseri strains was more homogeneous and generally higher than that in most of the Escherichia coli isolates studied. Our results improve the understanding of the diversity of colibactin determinants and its expression level, and may contribute to risk assessment of colibactin-producing enterobacteria.


Assuntos
Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Peptídeos/metabolismo , Fenóis/metabolismo , Policetídeos/metabolismo , Metabolismo Secundário , Tiazóis/metabolismo , Citrobacter/genética , Citrobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Humanos , Klebsiella/genética , Klebsiella/metabolismo , Mutagênicos/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia
19.
Brain ; 144(4): 1152-1166, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899089

RESUMO

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Assuntos
Suplementos Nutricionais , Enterite/patologia , Ácidos Linoleicos Conjugados/farmacologia , Monócitos/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Enterite/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Esclerose Múltipla Recidivante-Remitente/imunologia , Projetos Piloto , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...