Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 52(6-7): 497-510, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798395

RESUMO

The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Humanos , Ligação Proteica , RNA Mensageiro/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo
2.
Dev Dyn ; 250(4): 513-526, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095500

RESUMO

BACKGROUND: Oligodendrocytes generate specialized lipid-rich sheaths called myelin that wrap axons and facilitate the rapid, saltatory transmission of action potentials. Extrinsic signals and surface-mediated pathways coordinate oligodendrocyte development to ensure appropriate axonal myelination, but the mechanisms involved are not fully understood. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane enzyme that regulates the activity of surface glycosylphosphatidylinositol (GPI)-anchored proteins by cleavage of the GPI-anchor. GDE2 is expressed in neurons where it promotes oligodendrocyte maturation through the release of neuronally-derived soluble factors. GDE2 is also expressed in oligodendrocytes but the function of oligodendroglial GDE2 is not known. RESULTS: Using Cre-lox technology, we generated mice that lack GDE2 expression in oligodendrocytes (O-Gde2KO). O-Gde2KOs show normal production and proliferation of oligodendrocyte precursor cells. However, oligodendrocyte maturation is accelerated leading to the robust increase of myelin proteins and increased myelination during development. These in vivo observations are recapitulated in vitro using purified primary oligodendrocytes, supporting cell-autonomous functions for GDE2 in oligodendrocyte maturation. CONCLUSIONS: These studies reveal that oligodendroglial GDE2 expression is required for controlling the pace of oligodendrocyte maturation. Thus, the cell-type specific expression of GDE2 is important for the coordination of oligodendrocyte maturation and axonal myelination during neural development.


Assuntos
Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia
3.
Development ; 147(2)2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31932351

RESUMO

Oligodendrocyte development is tightly controlled by extrinsic signals; however, mechanisms that modulate cellular responses to these factors remain unclear. Six-transmembrane glycerophosphodiester phosphodiesterases (GDEs) are emerging as central regulators of cellular differentiation via their ability to shed glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. We show here that GDE3 controls the pace of oligodendrocyte generation by negatively regulating oligodendrocyte precursor cell (OPC) proliferation. GDE3 inhibits OPC proliferation by stimulating ciliary neurotrophic factor (CNTF)-mediated signaling through release of CNTFRα, the ligand-binding component of the CNTF-receptor multiprotein complex, which can function as a soluble factor to activate CNTF signaling. GDE3 releases soluble CNTFRα by GPI-anchor cleavage from the plasma membrane and from extracellular vesicles (EVs) after co-recruitment of CNTFRα in EVs. These studies uncover new physiological roles for GDE3 in gliogenesis and identify GDE3 as a key regulator of CNTF-dependent regulation of OPC proliferation through release of CNTFRα.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Membrana Celular/metabolismo , Proliferação de Células , Fator Neurotrófico Ciliar/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Transdução de Sinais , Solubilidade , Medula Espinal/embriologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA