Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem A Mater ; 12(19): 11635-11643, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38751728

RESUMO

A better understanding of the materials' fundamental physical processes is necessary to push hybrid perovskite photovoltaic devices towards their theoretical limits. The role of the perovskite grain boundaries is essential to optimise the system thoroughly. The influence of the perovskite grain size and crystal orientation on physical properties and their resulting photovoltaic performance is examined. We develop a novel, straightforward synthesis approach that yields crystals of a similar size but allows the tuning of their orientation to either the (200) or (002) facet alignment parallel to the substrate by manipulating dimethyl sulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) ratios. This decouples crystal orientation from grain size, allowing the study of charge carrier mobility, found to be improved with larger grain sizes, highlighting the importance of minimising crystal disorder to achieve efficient devices. However, devices incorporating crystals with the (200) facet exhibit an s-shape in the current density-voltage curve when standard scan rates are used, which typically signals an energetic interfacial barrier. Using the drift-diffusion simulations, we attribute this to slower-moving ions (mobility of 0.37 × 10-10 cm2 V-1 s-1) in combination with a lower density of mobile ions. This counterintuitive result highlights that reducing ion migration does not necessarily minimise hysteresis.

2.
Chem Commun (Camb) ; 60(14): 1876-1879, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38273815

RESUMO

Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm-1 under 100% CO2 and 65% Relative Humidity (RH).

3.
ACS Appl Energy Mater ; 6(22): 11573-11582, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38037633

RESUMO

Organic-inorganic hybrid halide perovskite solar cells (PSCs) have attracted substantial attention from the photovoltaic research community, with the power conversion efficiency (PCE) already exceeding 26%. Current state-of-the-art devices rely on Spiro-OMeTAD as the hole-transporting material (HTM); however, Spiro-OMeTAD is costly due to its complicated synthesis and expensive product purification, while its low conductivity ultimately limits the achievable device efficiency. In this work, we build upon our recently introduced family of low-cost amide-based small molecules and introduce a molecule (termed TPABT) that results in high conductivity values (∼10-5 S cm-1 upon addition of standard ionic additives), outperforming our previous amide-based material (EDOT-Amide-TPA, ∼10-6 S cm-1) while only costing an estimated $5/g. We ascribe the increased optoelectronic properties to favorable molecular packing, as shown by single-crystal X-ray diffraction, which results in close spacing between the triphenylamine blocks. This, in turn, results in a short hole-hopping distance between molecules and therefore good mobility and conductivity. In addition, TPABT exhibits a higher bandgap and is as a result more transparent in the visible range of the solar spectrum, leading to lower parasitic absorption losses than Spiro-OMeTAD, and has increased moisture stability. We applied the molecule in perovskite solar cells and obtained good efficiency values in the ∼15% range. Our approach shows that engineering better molecular packing may be the key to developing high-efficiency, low-cost HTMs for perovskite solar cells.

4.
ACS Photonics ; 10(11): 4022-4030, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38027252

RESUMO

We report on the emission of high-intensity pulsed terahertz radiation from the metal-free halide perovskite single crystal methyl-DABCO ammonium iodide (MDNI) under femtosecond illumination. The power and angular dependence of the THz output implicate optical rectification of the 800 nm pump as the mechanism of THz generation. Further characterization finds that, for certain crystal orientations, the angular dependence of THz emission is modulated by phonon resonances attributable to the motion of the methyl-DABCO moiety. At maximum, the THz emission spectrum of MDNI is free from significant phonon resonances, resulting in THz pulses with a temporal width of <900 fs and a peak-to-peak electric field strength of approximately 0.8 kV cm-1-2 orders of magnitude higher than any other reported halide perovskite emitters. Our results point toward metal-free perovskites as a promising new class of THz emitters that brings to bear many of the advantages enjoyed by other halide perovskite materials. In particular, the broad tunability of optoelectronic properties and ease of fabrication of perovskite materials opens up the possibility of further optimizing the THz emission properties within this material class.

5.
Chem Sci ; 14(26): 7101-7102, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416709

RESUMO

The future of information technologies lies in the form of trillions of autonomous 'smart objects' that can sense and communicate with their environment delivering pervasive and ubiquitous computing beyond today's imagination. Michaels et al. (H. Michaels, M. Rinderle, I. Benesperi, R. Freitag, A. Gagliardi and M. Freitag, Chem. Sci., 2023, 14, 5350, https://doi.org/10.1039/D3SC00659J) have achieved a key milestone in this context by developing an integrated autonomous and light-powered Internet of Things (IoT) system. They also show that dye-sensitized solar cells are particularly well-suited for this purpose with an indoor power conversion efficiency of 38%, far surpassing conventional silicon photovoltaics and alternative indoor photovoltaics technologies.

6.
Adv Mater ; 35(32): e2302146, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37145114

RESUMO

Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately. As a result, the field often resorts to a trial-and-error process to optimize these interfaces. Current approaches are typically carried out in a vacuum and on incomplete cells, hence values may not reflect those found in working devices. To address this, a pulsed measurement technique characterizing the electrostatic potential energy drop across the perovskite layer in a functioning device is developed. This method reconstructs the current-voltage (JV) curve for a range of stabilization biases, holding the ion distribution "static" during subsequent rapid voltage pulses. Two different regimes are observed: at low biases, the reconstructed JV curve is "s-shaped", whereas, at high biases, typical diode-shaped curves are returned. Using drift-diffusion simulations, it is demonstrated that the intersection of the two regimes reflects the band offsets at the interfaces. This approach effectively allows measurements of interfacial energy level alignment in a complete device under illumination and without the need for expensive vacuum equipment.

7.
Phys Chem Chem Phys ; 24(31): 18729-18737, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899998

RESUMO

Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10-7 S cm-1) compared to 1 (1.6 × 10-8 S cm-1). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5-1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10-6 S cm-1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.

8.
Sci Adv ; 6(15): eaaz4948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300658

RESUMO

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.

9.
ACS Appl Mater Interfaces ; 11(23): 20838-20844, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099235

RESUMO

Perovskite-based thin-film solar cells today reach power conversion efficiencies of more than 22%. Methylammonium lead iodide (MAPI) is prototypical for this material class of hybrid halide perovskite semiconductors and at the focal point of interest for a growing community in research and engineering. Here, a detailed understanding of the charge carrier transport and its limitations by underlying scattering mechanisms is of great interest to the material's optimization and development. In this article, we present an all-optical study of the charge carrier diffusion properties in large-crystal MAPI thin films in the tetragonal crystal phase from 170 K to room temperature. We probe the local material properties of individual crystal grains within a MAPI thin film and find a steady decrease of the charge carrier diffusion constant with increasing temperature. From the resulting charge carrier mobility, we find a power law dependence of µ ∝ T m with m = -(1.8 ± 0.1). We further study the temperature-dependent mobility of the orthorhombic crystal phase from 50 to 140 K and observe a distinctly different exponent of m = -(1.2 ± 0.1).

10.
ACS Appl Mater Interfaces ; 11(13): 12948-12957, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30859802

RESUMO

Solution-processed perovskite solar cells reach efficiencies over 23% on lab-scale. However, a reproducible transfer of these established processes to upscaling techniques or different substrate surfaces requires a highly controllable perovskite film formation. Especially, hydrophobic surfaces cause severe dewetting issues. Such surfaces are particularly crucial for the so-called standard n-i-p cell architecture when fullerene-based electron transport layers are employed underneath perovskite absorber films. In this work, a unique and universally applicable method was developed based on the deposition of size-controlled Al2O3 or SiO2 nanoparticles. By enhancing the surface energy, they act as a universal wetting agent. This allows perovskite precursor solutions to be spread perfectly over various substrates including problematic hydrophobic Si-wafers or fullerene self-assembled monolayers (C60-SAMs). Moreover, the results show that the perovskite morphology, solar cell performance, and reproducibility benefit from the presence of the nanoparticles at the interface. When applied to 144 cm2 C60-SAM-coated substrates, homogenous coverage can be realized via spin coating resulting in average efficiencies of 16% (maximum 18%) on individualized cells with 0.1 cm2 active area. Modules in the same setup reached maximum efficiencies of 11 and 7% on 2.8 and 23.65 cm2 aperture areas, respectively.

11.
ACS Appl Mater Interfaces ; 10(14): 11414-11419, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557162

RESUMO

We tune the Fermi level alignment between the SnO x electron transport layer (ETL) and Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 and highlight that this parameter is interlinked with current-voltage hysteresis in perovskite solar cells (PSCs). Furthermore, thermally stimulated current measurements reveal that the depth of trap states in the ETL or at the ETL-perovskite interface correlates with Fermi level positions, ultimately linking it to the energy difference between the Fermi level and conduction band minimum. In the presence of deep trap states, charge accumulation and recombination at the interface are promoted, affecting the charge collection efficiency adversely, which increases the hysteresis of PSCs.

12.
ACS Appl Mater Interfaces ; 10(9): 7974-7981, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433313

RESUMO

Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

13.
ACS Appl Mater Interfaces ; 9(43): 37655-37661, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019644

RESUMO

Understanding the charge transport characteristics and their limiting factors in organolead halide perovskites is of great importance for the development of competitive and economically advantageous photovoltaic systems derived from these materials. In the present work, we examine the charge carrier mobilities in CH3NH3PbI3 (MAPI) thin films obtained from a one-step synthesis procedure and in planar n-i-p devices based on these films. By performing time-of-flight measurements, we find mobilities around 6 cm2/V s for electrons and holes in MAPI thin films, whereas in working solar cells, the respective effective mobility values are reduced by 3 orders of magnitude. From complementary experiments on devices with varying thicknesses of electron and hole transport layers, we identify the charge extraction layers and the associated interfaces rather than the perovskite material itself as the major limiting factors of the charge carrier transport time in working devices.

14.
Sci Adv ; 3(1): e1601935, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138550

RESUMO

Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (µFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages.

15.
Angew Chem Int Ed Engl ; 55(44): 13887-13892, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27690323

RESUMO

We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3 ) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.

16.
ChemSusChem ; 9(18): 2699-2707, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27624589

RESUMO

We investigated the influence of moisture on methylammonium lead iodide perovskite (MAPbI3 ) films and solar cells derived from non-stoichiometric precursor mixtures. We followed both the structural changes under controlled air humidity through in situ X-ray diffraction, and the electronic behavior of devices prepared from these films. A small PbI2 excess in the films improved the stability of the perovskite compared to stoichiometric samples. We assign this to excess PbI2 layers at the perovskite grain boundaries or to the termination of the perovskite crystals with Pb and I. In contrast, the MAI-excess films composed of smaller perovskite crystals showed increased electronic disorder and reduced device performance owing to poor charge collection. Upon exposure to moisture followed by dehydration (so-called solvent annealing), these films recrystallized to form larger, highly oriented crystals with fewer electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Vapor , Titânio/química , Amidinas/química , Estabilidade de Medicamentos , Solventes/química
17.
ACS Nano ; 10(6): 5999-6007, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27228558

RESUMO

Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

18.
ACS Appl Mater Interfaces ; 8(20): 12881-6, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27149009

RESUMO

Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.

19.
Molecules ; 21(4): 542, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27120590

RESUMO

In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT: PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.


Assuntos
Compostos de Cálcio/síntese química , Óxidos/síntese química , Compostos de Cálcio/química , Temperatura Baixa , Óxidos/química , Plásticos/química , Energia Solar , Titânio/química
20.
Chem Asian J ; 11(8): 1199-204, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-26928877

RESUMO

State-of-the-art solar cells based on methylammonium lead iodide (MAPbI3 ) now reach efficiencies over 20 %. This fast improvement was possible with intensive research in perovskite processing. In particular, chloride-based precursors are known to have a positive influence on the crystallization of the perovskite. Here, we used a combination of in-situ X-ray diffraction and charge-transport measurements to understand the influence of chloride during perovskite crystallization in planar heterojunction solar cells. We show that MAPbCl3 crystallizes directly after the deposition of the starting solution and acts as a template for the formation of MAPbI3 . Additionally, we show that the charge-carrier mobility doubles by extending the time for the template formation. Our results give a deeper understanding of the influence of chloride in the synthesis of MAPbI3 and illustrate the importance of carefully controlling crystallization for reproducible, high-efficiency solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...