Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
New Phytol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730532

RESUMO

Effector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f. sp. tritici (Pgt) effector AvrSr27, which was not accurately predicted using AlphaFold2. We characterised the role of the conserved cysteine residues in AvrSr27 using in vitro biochemical assays and examined Sr27-mediated recognition using transient expression in Nicotiana spp. and wheat protoplasts. The AvrSr27 structure contains a novel ß-strand rich modular fold consisting of two structurally similar domains that bind to Zn2+ ions. The N-terminal domain of AvrSr27 is sufficient for interaction with Sr27 and triggering cell death. We identified two Pgt proteins structurally related to AvrSr27 but with low sequence identity that can also associate with Sr27, albeit more weakly. Though only the full-length proteins, trigger Sr27-dependent cell death in transient expression systems. Collectively, our findings have important implications for utilising protein prediction platforms for effector proteins, and those embarking on bespoke engineering of immunity receptors as solutions to plant disease.

2.
PLOS Digit Health ; 3(4): e0000473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602898

RESUMO

Consumer wearables have been successful at measuring sleep and may be useful in predicting changes in mental health measures such as stress. A key challenge remains in quantifying the relationship between sleep measures associated with physiologic stress and a user's experience of stress. Students from a public university enrolled in the Lived Experiences Measured Using Rings Study (LEMURS) provided continuous biometric data and answered weekly surveys during their first semester of college between October-December 2022. We analyzed weekly associations between estimated sleep measures and perceived stress for participants (N = 525). Through mixed-effects regression models, we identified consistent associations between perceived stress scores and average nightly total sleep time (TST), resting heart rate (RHR), heart rate variability (HRV), and respiratory rate (ARR). These effects persisted after controlling for gender and week of the semester. Specifically, for every additional hour of TST, the odds of experiencing moderate-to-high stress decreased by 0.617 or by 38.3% (p<0.01). For each 1 beat per minute increase in RHR, the odds of experiencing moderate-to-high stress increased by 1.036 or by 3.6% (p<0.01). For each 1 millisecond increase in HRV, the odds of experiencing moderate-to-high stress decreased by 0.988 or by 1.2% (p<0.05). For each additional breath per minute increase in ARR, the odds of experiencing moderate-to-high stress increased by 1.230 or by 23.0% (p<0.01). Consistent with previous research, participants who did not identify as male (i.e., female, nonbinary, and transgender participants) had significantly higher self-reported stress throughout the study. The week of the semester was also a significant predictor of stress. Sleep data from wearable devices may help us understand and to better predict stress, a strong signal of the ongoing mental health epidemic among college students.

3.
iScience ; 27(2): 108817, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533452

RESUMO

Plant Toll/interleukin-1 receptor/resistance protein (TIR) type nucleotide-binding and leucine-rich repeat immune receptors (NLRs) require enhanced disease susceptibility 1 (EDS1) family proteins and the helper NLRs NRG1 and ADR1 for immune activation. We show that the NbEDS1-NbSAG101b-NbNRG1 signaling pathway in N. benthamiana is necessary for cell death signaling by TIR-NLRs from a range of plant species, suggesting a universal requirement for this module in TIR-NLR-mediated cell death in N. benthamiana. We also find that TIR domains physically associate with NbEDS1, NbPAD4, and NbSAG101 in planta, independently of each other. Furthermore, NbNRG1 associates with NbSAG101b, but not with other EDS1 family members, via its C-terminal EP domain. Physical interaction between activated TIRs and EDS1 signaling complexes may facilitate the transfer of low abundance products of TIR catalytic activity or alter TIR catalytic activity to favor the production of EDS1 heterodimer ligands.

4.
IEEE Open J Eng Med Biol ; 5: 14-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445244

RESUMO

OBJECTIVE: Panic attacks are an impairing mental health problem that affects 11% of adults every year. Current criteria describe them as occurring without warning, despite evidence suggesting individuals can often identify attack triggers. We aimed to prospectively explore qualitative and quantitative factors associated with the onset of panic attacks. RESULTS: Of 87 participants, 95% retrospectively identified a trigger for their panic attacks. Worse individually reported mood and state-level mood, as indicated by Twitter ratings, were related to greater likelihood of next-day panic attack. In a subsample of participants who uploaded their wearable sensor data (n = 32), louder ambient noise and higher resting heart rate were related to greater likelihood of next-day panic attack. CONCLUSIONS: These promising results suggest that individuals who experience panic attacks may be able to anticipate their next attack which could be used to inform future prevention and intervention efforts.

5.
Nat Plants ; 10(4): 572-580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409291

RESUMO

Crop breeding for durable disease resistance is challenging due to the rapid evolution of pathogen virulence. While progress in resistance (R) gene cloning and stacking has accelerated in recent years1-3, the identification of corresponding avirulence (Avr) genes in many pathogens is hampered by the lack of high-throughput screening options. To address this technology gap, we developed a platform for pooled library screening in plant protoplasts to allow rapid identification of interacting R-Avr pairs. We validated this platform by isolating known and novel Avr genes from wheat stem rust (Puccinia graminis f. sp. tritici) after screening a designed library of putative effectors against individual R genes. Rapid Avr gene identification provides molecular tools to understand and track pathogen virulence evolution via genotype surveillance, which in turn will lead to optimized R gene stacking and deployment strategies. This platform should be broadly applicable to many crop pathogens and could potentially be adapted for screening genes involved in other protoplast-selectable traits.

6.
Plant Cell ; 36(5): 1465-1481, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262477

RESUMO

Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Transdução de Sinais , Imunidade Vegetal/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/imunologia , Plantas/imunologia , Plantas/microbiologia , Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Mol Plant Microbe Interact ; 37(3): 171-178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170736

RESUMO

Crops are constantly exposed to pathogenic microbes. Rust fungi are examples of these harmful microorganisms, which have a major economic impact on wheat production. To protect themselves from pathogens like rust fungi, plants employ a multilayered immune system that includes immunoreceptors encoded by resistance genes. Significant efforts have led to the isolation of numerous resistance genes against rust fungi in cereals, especially in wheat. However, the evolution of virulence of rust fungi hinders the durability of resistance genes as a strategy for crop protection. Rust fungi, like other biotrophic pathogens, secrete an arsenal of effectors to facilitate infection, and these are the molecules that plant immunoreceptors target for pathogen recognition and mounting defense responses. When recognized, these effector proteins are referred to as avirulence (Avr) effectors. Despite the many predicted effectors in wheat rust fungi, only five Avr genes have been identified, all from wheat stem rust. Knowledge of the Avr genes and their variation in the fungal population will inform deployment of the most appropriate wheat disease-resistance genes for breeding and farming. The review provides an overview of methodologies as well as the validation techniques that have been used to characterize Avr effectors from wheat stem rust. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Basidiomycota , Melhoramento Vegetal , Basidiomycota/genética , Virulência/genética , Resistência à Doença/genética , Produtos Agrícolas , Doenças das Plantas/microbiologia
8.
Plant Dis ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277650

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important foliar pathogen of oat which causes crown rust disease. The virulence profile of 48 Pca isolates derived from different locations in Australia was characterised using a collection of oat lines often utilised in rust surveys in the USA and Australia. This analysis indicates that Pca populations in Eastern Australia are broadly virulent, in contrast to the population in Western Australia (WA). Several oat lines/Pc genes are effective against all rust samples collected from WA, suggesting they may provide useful resistance in this region if deployed in combination. We identified 19 lines from the USA oat differential set that display disease resistance to Pca in WA, some in agreement with previous rust survey reports. We adopted the 10-letter nomenclature system to define oat crown rust races in Australia and compare the frequency of those virulence traits to published data from the USA. Based on this nomenclature, 42 unique races were detected among the 48 isolates, reflecting the high diversity of virulence phenotypes for Pca in Australia. Nevertheless, the Pca population in the USA is substantially more broadly virulent than that of Australia. Close examination of resistance profiles for the oat differential set lines after infection with Pca supports hypotheses of allelism or redundancy among Pc genes or the presence of several resistance genes in some oat differential lines. These findings illustrate the need to deconvolute the oat differential set using molecular tools.

9.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955552

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Resistência à Doença , Puccinia , Resistência à Doença/genética , Avena/genética , Avena/microbiologia , Virulência/genética , Estudo de Associação Genômica Ampla , Filogenia , Doenças das Plantas/microbiologia , Basidiomycota/genética , Dinâmica Populacional
10.
Phytopathology ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114076

RESUMO

Puccinia coronata f. sp. avenae (Pca) is the causal agent of the disease known as crown rust which represents a bottleneck in oat production worldwide. Characterisation of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared virulence profiles of 25 Pca isolates from Australia using two host differential sets, one from Australia and one from the USA. These differential sets were also genotyped using DArT sequencing technology. Phenotypic and genotypic discrepancies were detected on eight out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar 'Volta' carries Pc91 and demonstrates the value of implementing molecular markers to characterise materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies.

11.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963867

RESUMO

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Assuntos
Basidiomycota , Resistência à Doença , Mapeamento Cromossômico , Resistência à Doença/genética , Alelos , Haplótipos , Sequência de Aminoácidos , Basidiomycota/genética , Doenças das Plantas/genética
12.
Nat Microbiol ; 8(11): 2130-2141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884814

RESUMO

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.


Assuntos
Doenças das Plantas , Triticum , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Austrália
13.
Contemp Clin Trials ; 133: 107338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722484

RESUMO

INTRODUCTION: The transition to college is a period of elevated risk for a range of mental health conditions. Although colleges and universities strive to provide mental health support to their students, the high demand for these services makes it difficult to provide scalable, cost-effective solutions. OBJECTIVE: To address these issues, the present study aims to compare the efficacy of three different treatments using a large cohort of 600 students transitioning to college. Interventions were selected based on their potential for generalizability and cost-effectiveness on college campuses. METHODS: The study is a Phase II parallel-group, four-arm, randomized controlled trial with 1:1 allocation that will assign 600 participants to one (n = 150 per condition) of four arms: 1) group-based therapy, 2) physical activity program, 3) nature experiences, or 4) weekly assessment condition as a control group. Physiological data will be collected from all participants using a wearable device to develop algorithmic mental and physical health functioning predictions. Once recruitment is complete, modeling strategies will be used to evaluate the outcomes and effectiveness of each intervention. DISCUSSION: The findings of this study will provide evidence as to the benefits of implementing scalable and proactive interventions using technology with the goal of improving the well-being and success of new college students.

14.
Mol Plant Microbe Interact ; 36(8): 461-467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37697270

RESUMO

The gene-for-gene model proposed by H. H. Flor has been one of the fundamental precepts of plant-pathogen interactions that has underpinned decades of research towards our current concepts of plant immunity. The broad validity of this model as an elegant and accurate genetic description of specific recognition events between the products of plant resistance (R) and pathogen avirulence (Avr) genes has been demonstrated many times over in a wide variety of plant disease systems. In recent years detailed molecular and structural analyses have provided a deep understanding of the principles by which plant immune receptors recognize pathogen effectors, including providing molecular descriptions of many of the genetic loci in flax and flax rust characterized by Flor. Recent advances in molecular and structural understanding of immune receptor recognition and activation mechanisms have brought the field to a new level, where rational design of novel receptors through engineering approaches is becoming a realizable goal. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Linho , Linho/genética , Loci Gênicos , Imunidade Vegetal/genética
15.
Plant J ; 114(6): 1209-1226, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323061

RESUMO

Protein-protein interactions (PPIs) are a fundamental process in cellular biogenesis. Here we have developed a split GAL4 RUBY assay that enables macroscopically visual PPI detection in plant leaves in real time. Candidate interacting protein partners are fused to specific domains of the yeast GAL4 and herpes simplex virus VP16 transcription factors and transiently expressed in Nicotiana benthamina leaves by Agrobacterium infiltration. PPI, that may be either direct or indirect, results in transcriptional activation of a RUBY reporter gene leading to the production of the highly visual metabolite, betalain, in leaf tissue of living plants. Samples require no processing for in planta visual qualitative assessment, but with very simple processing steps the assay is quantitative. Its accuracy is demonstrated using a series of known interacting protein partners and mutant derivatives including transcription factors, signalling molecules and plant resistance proteins with cognate pathogen effectors. Using this assay, association between the wheat Sr27 stem rust disease resistance protein and corresponding AvrSr27 avirulence effector family produced by the rust pathogen is detected. Interaction is also observed between this resistance protein and the effector encoded by the corresponding avrSr27-3 virulence allele. However, this association appears weaker in the split GAL4 RUBY assay, which coupled with lower avrSr27-3 expression during stem rust infection, likely enables virulent races of the rust pathogen to avoid Sr27-mediated detection.


Assuntos
Basidiomycota , Basidiomycota/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo , Fatores de Transcrição/genética , Doenças das Plantas/microbiologia
16.
Sci Rep ; 13(1): 5266, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002316

RESUMO

Online misogyny has become a fixture in female politicians' lives. Backlash theory suggests that it may represent a threat response prompted by female politicians' counterstereotypical, power-seeking behaviors. We investigated this hypothesis by analyzing Twitter references to Hillary Clinton before, during, and after her presidential campaign. We collected a corpus of over 9 million tweets from 2014 to 2018 that referred to Hillary Clinton, and employed an interrupted time series analysis on the relative frequency of misogynistic language within the corpus. Prior to 2015, the level of misogyny associated with Clinton decreased over time, but this trend reversed when she announced her presidential campaign. During the campaign, misogyny steadily increased and only plateaued after the election, when the threat of her electoral success had subsided. These findings are consistent with the notion that online misogyny towards female political nominees is a form of backlash prompted by their ambition for power in the political arena.


Assuntos
Mídias Sociais , Humanos , Feminino , Política , Idioma , Pessoal Administrativo , Análise de Séries Temporais Interrompida
17.
Plant J ; 114(6): 1319-1337, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932864

RESUMO

Recent work shed light on how plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLR) family are activated upon pathogen effector recognition to trigger immune responses. Activation of Toll-interleukin-1 receptor (TIR) domain-containing NLRs (TNLs) induces receptor oligomerization and close proximity of the TIR domain, which is required for TIR enzymatic activity. TIR-catalyzed small signaling molecules bind to EDS1 family heterodimers and subsequently activate downstream helper NLRs, which function as Ca2+ permeable channel to activate immune responses eventually leading to cell death. Subcellular localization requirements of TNLs and signaling partners are not well understood, although they are required to understand fully the mechanisms underlying NLR early signaling. TNLs show diverse subcellular localization while EDS1 shows nucleocytosolic localization. Here, we studied the impact of TIR and EDS1 mislocalization on the signaling activation of different TNLs. In Nicotiana benthamiana, our results suggest that close proximity of TIR domains isolated from flax L6 and Arabidopsis RPS4 and SNC1 TNLs drives signaling activation from different cell compartments. Nevertheless, both Golgi-membrane anchored L6 and nucleocytosolic RPS4 have the same requirements for EDS1 subcellular localization in Arabidopsis thaliana. By using mislocalized variants of EDS1, we found that autoimmune L6 and RPS4 TIR domain can induce seedling cell death when EDS1 is present in the cytosol. However, when EDS1 is restricted to the nucleus, both induce a stunting phenotype but no cell death. Our data point out the importance of thoroughly investigating the dynamics of TNLs and signaling partners subcellular localization to understand TNL signaling fully.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Arabidopsis/metabolismo , Receptores Imunológicos/metabolismo , Morte Celular/genética , Imunidade Vegetal/genética , Doenças das Plantas
18.
New Phytol ; 239(1): 222-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631975

RESUMO

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Assuntos
Basidiomycota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Basidiomycota/genética , Fungos/genética , Pirofosfatases/metabolismo , Virulência/genética , Doenças das Plantas/microbiologia , Nudix Hidrolases
19.
PLoS One ; 18(1): e0279225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630354

RESUMO

The murder of George Floyd by police in May 2020 sparked international protests and brought unparalleled levels of attention to the Black Lives Matter movement. As we show, his death set record levels of activity and amplification on Twitter, prompted the saddest day in the platform's history, and caused his name to appear among the ten most frequently used phrases in a day, where he is the only individual to have ever received that level of attention who was not known to the public earlier that same week. Importantly, we find that the Black Lives Matter movement's rhetorical strategy to connect and repeat the names of past Black victims of police violence-foregrounding racial injustice as an ongoing pattern rather than a singular event-was exceptionally effective following George Floyd's death: attention given to him extended to over 185 prior Black victims, more than other past moments in the movement's history. We contextualize this rising tide of attention among 12 years of racial justice activism on Twitter, demonstrating how activists and allies have used attention and amplification as a recurring tactic to lift and memorialize the names of Black victims of police violence. Our results show how the Black Lives Matter movement uses social media to center past instances of police violence at an unprecedented scale and speed, while still advancing the racial justice movement's longstanding goal to "say their names."


Assuntos
Negro ou Afro-Americano , Polícia , Humanos , Masculino , Grupos Raciais , Violência
20.
PLoS One ; 18(1): e0280931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696437

RESUMO

Natural language processing of medical records offers tremendous potential to improve the patient experience. Sentiment analysis of clinical notes has been performed with mixed results, often highlighting the issue that dictionary ratings are not domain specific. Here, for the first time, we re-calibrate the labMT sentiment dictionary on 3.5M clinical notes describing 10,000 patients diagnosed with lung cancer at the Department of Veterans Affairs. The sentiment score of notes was calculated for two years after date of diagnosis and evaluated against a lab test (platelet count) and a combination of data points (treatments). We found that the oncology specific labMT dictionary, after re-calibration for the clinical oncology domain, produces a promising signal in notes that can be detected based on a comparative analysis to the aforementioned parameters.


Assuntos
Neoplasias Pulmonares , Veteranos , Humanos , Análise de Sentimentos , Prontuários Médicos , Atitude , Processamento de Linguagem Natural , Neoplasias Pulmonares/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...