Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14416-14421, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38744681

RESUMO

Carbene species play an integral role in high-energy chemistry, transition-metal-carbene chemistry, catalysis, photolytic formation of carbohydrates, and possibly even the formation of interstellar sugars. In 1921, "reactive formaldehyde"─now known as hydroxymethylene (HCOH)─was first implicated as an intermediate in photocatalytic processes. However, due to its transient nature, direct observation of HCOH has predominantly been attained using cryogenic isolation methods. As a result, HCOH gas-phase reactivity measurements have been limited. We directly observed HCOH using photoionization spectroscopy following UV photodissociation of methanol. Our measurements show it reacts slowly with O2 at room temperature. This work provides evidence for the formation mechanism of HCOH from CH3OH and its subsequent reactivity under gas-phase reaction conditions.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38436440

RESUMO

Methyl nitrite has two stable conformational isomers resulting from rotation about the primary C-O-N-O dihedral angle: cis-CH3ONO and trans-CH3ONO, with cis being more stable by ∼5 kJ/mol. The barrier to rotational interconversion (∼45 kJ/mol) is too large for isomerization to occur under ambient conditions. This paper presents evidence of a change in conformer abundance when dilute CH3ONO is deposited onto a cold substrate; the relative population of the freshly deposited cis conformer is seen to increase compared to its gas-phase abundance, measured by in situ infrared spectroscopy. We observe abundance changes depending on the identity of the bath gas (N2, Ar, and Xe) and deposition angle. The observations indicate that the surface properties of the growing matrix influence conformer abundance-contrary to the widely held assumption that conformer abundance in matrices reflects gas-phase abundance. We posit that differences in the angle-dependent host-gas deposition dynamics affect the growing surfaces, causing changes in conformer abundances. Quantum chemistry calculations of the binding energies between CH3ONO and a single bath-gas component reveal that significant energetic stabilization is not observed in 1:1 complexes of N2:CH3ONO, Ar:CH3ONO, or Xe:CH3ONO. From our results, we conclude that the growing surface plays a significant role in trapping cis-CH3ONO more effectively than trans-CH3ONO, likely because cis-CH3ONO is more compact. Taken together, the observations highlight the necessity for careful characterization of conformers in matrix-isolated systems, emphasizing a need for further study into the deposition dynamics and surface structure of chemically inert matrices.

3.
J Phys Chem A ; 126(20): 3110-3123, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35583384

RESUMO

The matrix-isolated infrared spectrum of a hydrogen cyanide-methyl chloride complex was investigated in a solid argon matrix. HCN and CH3Cl were co-condensed onto a substrate held at 10 K with an excess of argon gas, and the infrared spectrum was measured using Fourier-transform infrared spectroscopy. Quantum chemical geometry optimization, harmonic frequency, and natural bonding orbital calculations indicate stabilized hydrogen- and halogen-bonded structures. The two resulting weakly bound complexes are both composed of one CH3Cl molecule bound to a (HCN)3 subunit, where the three HCN molecules are bound head-to-tail in a ring formation. Our study suggests that─in the presence of CH3Cl─the formation of (HCN)3 is promoted through complexation. Since HCN aggregates are an important precursor to prebiotic monomers (amino acids and nucleobases) and other life-bearing polymers, this study has astrophysical implications toward the search for life in space.


Assuntos
Cianeto de Hidrogênio , Polímeros , Argônio , Cianeto de Hidrogênio/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Am Chem Soc ; 143(42): 17778-17785, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637616

RESUMO

We investigated the structural and spectroscopic properties of singly deprotonated biliverdin anions in vacuo, using a combination of cryogenic ion spectroscopy, ion mobility spectrometry, and density functional theory. The ion mobility results show that at least two conformers are populated, with the dominant conformer at 75-90% relative abundance. The vibrational NH stretching signatures are sensitive to the tetrapyrrole structure, and they indicate that the tetrapyrrole system is in a helical conformation, consistent with simulated ion mobility collision cross sections. The vibrational spectrum in the fingerprint region of this singly deprotonated species shows that the two propionate groups share the remaining acidic proton. The S1 band of the electronic spectrum in vacuo is broad, despite ion trap temperatures of 20 K during ion preparation, with a congested Franck-Condon envelope showing partially resolved vibrational features. The vertical transition exhibits a small solvatochromic red shift (-320 cm-1) in aqueous solution.

5.
Phys Chem Chem Phys ; 20(45): 28535-28543, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30418446

RESUMO

The intrinsic photophysics of nitrophenolate isomers (meta, para, and ortho) was studied at low temperature using photodissociation mass spectrometry in a cryogenic ion trap instrument. Each isomer has distinct photophysics that affects the excited state lifetimes, as observed experimentally in their spectroscopic linewidths. Visible-light-induced excitation of m-nitrophenolate gives rise to well-resolved vibronic features in the spectrum of the S1 state. The para and ortho isomers have broad spectra - even at cryogenic temperatures - due to their shorter excited state lifetimes and spectral congestion. We present computational evidence for mixing of the first and second excited states of o-nitrophenolate, leading to significant additional broadening in the experimental spectrum.

6.
J Phys Chem A ; 122(34): 6909-6917, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30088932

RESUMO

We study small titanium oxide-CO2 cluster anions in vacuo to understand the fundamental interactions between TiO x and CO2 in the presence of an excess electron. Infrared spectra of [TiO x(CO2) y]- ( x = 1-3, y > 1) were obtained using photodissociation spectroscopy and assigned through quantum chemistry calculations, identifying the formation of carbonato, oxalato, oxo, η2-(O,O), and carbonyl ligands in the core ions of these clusters, with carbonato ligands being the dominant ligand species.

7.
J Chem Phys ; 148(18): 184302, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29764149

RESUMO

The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.

8.
Annu Rev Phys Chem ; 69: 231-252, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29490208

RESUMO

Redox chemistry during the activation of carbon dioxide involves changing the charge state in a CO2 molecular unit. However, such changes are usually not well described by integer formal charges, and one can think of COO functional units as being in intermediate oxidation states. In this article, we discuss the properties of CO2 and CO2-based functional units in various charge states. Besides covering isolated CO2 and its ions, we describe the CO2-based ionic species formate, oxalate, and carbonate. Finally, we provide an overview of CO2-based functional groups and ligands in clusters and metal-organic complexes.

9.
Chem Rev ; 118(7): 3337-3390, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29522327

RESUMO

Isoprene carries approximately half of the flux of non-methane volatile organic carbon emitted to the atmosphere by the biosphere. Accurate representation of its oxidation rate and products is essential for quantifying its influence on the abundance of the hydroxyl radical (OH), nitrogen oxide free radicals (NO x), ozone (O3), and, via the formation of highly oxygenated compounds, aerosol. We present a review of recent laboratory and theoretical studies of the oxidation pathways of isoprene initiated by addition of OH, O3, the nitrate radical (NO3), and the chlorine atom. From this review, a recommendation for a nearly complete gas-phase oxidation mechanism of isoprene and its major products is developed. The mechanism is compiled with the aims of providing an accurate representation of the flow of carbon while allowing quantification of the impact of isoprene emissions on HO x and NO x free radical concentrations and of the yields of products known to be involved in condensed-phase processes. Finally, a simplified (reduced) mechanism is developed for use in chemical transport models that retains the essential chemistry required to accurately simulate isoprene oxidation under conditions where it occurs in the atmosphere-above forested regions remote from large NO x emissions.

10.
J Phys Chem A ; 122(11): 2983-2991, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29510624

RESUMO

We explore the structures of [Ti(CO2) y]- cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.

11.
J Phys Chem A ; 121(21): 4132-4138, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28497958

RESUMO

We present IR spectra and quantum chemical calculations for anionic iron-CO2 clusters of the form [Fe(CO2)n]- (n = 3-7). All observed clusters have at least two CO2 units strongly bound to the metal atom. These strongly bound iron-CO2 complexes form the core ions of the clusters and are solvated by additional, weakly bound CO2 molecules. Larger clusters show clear infrared signatures of core ion isomers with three CO2 moieties as well. Dominant structural motifs are based on bidentate CO2 ligands with Fe-O/Fe-C bonds, oxalate ligands, and metal insertion into a CO bond.

12.
J Phys Chem A ; 119(8): 1279-91, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25621533

RESUMO

The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

13.
Chemosphere ; 83(11): 1513-23, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21316733

RESUMO

Salbutamol is a potent ß(2)-adrenergic receptor agonist widely used in the treatment of bronchial asthma and chronic obstructive pulmonary disease. An increasing number of studies have detected salbutamol in natural water systems worldwide. Studies have shown that sunlight degrades salbutamol resulting in the formation of products; some showing higher toxicity to bacteria Vibrio fischeri than the parent compound. In this contribution, steady-state absorption and emission techniques, high-performance liquid chromatography, and transient absorption spectroscopy are used to investigate the photochemistry of salbutamol in aqueous buffer solutions at controlled pH values. Ground- and excited-state calculations that include solvent effects are performed to guide the interpretation of the experimental results. Salbutamol is sensitive to UVB light absorption in the pH range from 3 to 12, forming products that absorb light at longer wavelengths than the parent compound. Quantum yields of degradation reveal that the deprotonated species is 10-fold more photo-active than the protonated species. In line with this result, the fluorescence quantum yield of the protonated species is more than an order of magnitude higher than that of the deprotonated species. Transient absorption spectroscopy shows that population of the triplet state occurs with a rate constant of 7.1×10(8)s(-1) in the protonated species, while a rate constant of 1.7×10(10)s(-1) is measured for the deprotonated species. While degradation of the deprotonated species is not affected by the presence of molecular oxygen, a twofold increase in the photodegradation yield of the protonated species in air-saturated conditions is observed.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Albuterol/química , Poluentes Químicos da Água/química , Agonistas de Receptores Adrenérgicos beta 2/análise , Agonistas de Receptores Adrenérgicos beta 2/efeitos da radiação , Albuterol/análise , Concentração de Íons de Hidrogênio , Modelos Químicos , Processos Fotoquímicos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...