Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6533): 1046-1049, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602863

RESUMO

The evolution of massive stars is influenced by the mass lost to stellar winds over their lifetimes. These winds limit the masses of the stellar remnants (such as black holes) that the stars ultimately produce. We used radio astrometry to refine the distance to the black hole x-ray binary Cygnus X-1, which we found to be [Formula: see text] kiloparsecs. When combined with archival optical data, this implies a black hole mass of 21.2 ± 2.2 solar masses, which is higher than previous measurements. The formation of such a high-mass black hole in a high-metallicity system (within the Milky Way) constrains wind mass loss from massive stars.

2.
Nat Commun ; 9(1): 2534, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955045

RESUMO

The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...