Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20232559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808450

RESUMO

The spatial structure of populations is key to many (eco-)evolutionary processes. In such cases, the strength and sign of selection on a trait may depend on the spatial scale considered. An example is the evolution of altruism: selection in local environments often favours cheaters over altruists, but this can be outweighed by selection at larger scales, favouring clusters of altruists over clusters of cheaters. For populations subdivided into distinct groups, this effect is described formally by multilevel selection theory. However, many populations do not consist of non-overlapping groups but rather (self-)organize into other ecological patterns. We therefore present a mathematical framework for multiscale selection. This framework decomposes natural selection into two parts: local selection, acting within environments of a certain size, and interlocal selection, acting among them. Varying the size of the local environments subsequently allows one to measure the contribution to selection of each spatial scale. To illustrate the use of this framework, we apply it to models of the evolution of altruism and pathogen transmissibility. The analysis identifies how and to what extent ecological processes at different spatial scales contribute to selection and compete, thus providing a rigorous underpinning to eco-evolutionary intuitions.


Assuntos
Altruísmo , Evolução Biológica , Seleção Genética , Animais , Modelos Biológicos , Dinâmica Populacional
2.
Elife ; 102021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459590

RESUMO

Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected.


Bacteriophages, or phages for short, are viruses that need to infect bacteria to multiply. Once inside a cell, phages follow one of two strategies. They either start to replicate quickly, killing the host in the process; or they lay dormant, their genetic material slowly duplicating as the bacterium divides. These two strategies are respectively known as a 'lytic' or a 'lysogenic' infection. In 2017, scientists discovered that, during infection, some phages produce a signalling molecule that influences the strategy other phages will use. Generally, a high concentration of the signal triggers lysogenic infection, while a low level prompts the lytic type. However, it is still unclear what advantages this communication system brings to the viruses, and how it has evolved. Here, Doekes et al. used a mathematical model to explore how communication changes as phages infect a population of bacteria, rigorously testing earlier theories. The simulations showed that early in an outbreak, when only a few cells have yet been infected, the signalling molecule levels are low: lytic infections are therefore triggered and the phages quickly multiply, killing their hosts in the process. This is an advantageous strategy since many bacteria are available for the viruses to prey on. Later on, as more phages are being produced and available bacteria become few and far between, the levels of the signalling molecule increase. The viruses then switch to lysogenic infections, which allows them to survive dormant, inside their host. Doekes et al. also discovered that this communication system only evolves if phages regularly cause large outbreaks in new, uninfected bacterial populations. From there, the model was able to predict that phages switch from lytic to lysogenic infections when about half the available bacteria have been infected. As antibiotic resistance rises around the globe, phages are increasingly considered as a new way to fight off harmful bacteria. Deciphering the way these viruses communicate could help to understand how they could be harnessed to control the spread of bacteria.


Assuntos
Bacteriófagos/fisiologia , Lisogenia , Interações Microbianas , Fenômenos Fisiológicos Virais
3.
Elife ; 92020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32432548

RESUMO

Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.


Most animals, including humans, inherit genes from their parents. However, bacteria and other microorganisms can also acquire genes from members of the same generation. This process, called horizontal gene transfer (HGT for short), allows bacteria to quickly adapt to new environments. For example, rather than waiting for rare mutations to arise, bacteria can pick up 'tried and true' genes from their neighbours which allow them to exploit new resources or become resistant to antibiotics. But gene sharing comes at a cost. For instance, taking up DNA is an energetically costly process and exposes bacteria to so-called selfish genes which replicate at the expense of other more useful genes in the genome. Given the costs and the threat of selfish genes, it remained unclear whether HGT is still beneficial in a stable environment where no new resources or antibiotics are present. Here, van Dijk et al. used mathematical modelling to examine how gene sharing affects the growth rate of bacterial colonies living in a stable environment. The experiments showed that bacteria are able to take up new sequences of DNA even in the presence of selfish genes. This allows communities of bacteria to retain genes that provide a small benefit that would otherwise be lost from the population, even when taking up DNA imposes a cost upon the individual. van Dijk et al. found that this collective behaviour cannot evolve in well-mixed bacterial populations, but readily emerged in more structured populations, such as biofilms. This work demonstrates how HGT, a key component of bacterial evolution, has allowed bacteria to coexist with harmful selfish genes. It also provides insights into how genes persist and spread through bacterial communities, which has implications for our understanding of antibiotic resistance.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Evolução Molecular , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , DNA Bacteriano/metabolismo , Transferência Genética Horizontal
4.
PLoS Comput Biol ; 15(8): e1007333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469819

RESUMO

The production of anticompetitor toxins is widespread among bacteria. Because production of such toxins is costly, it is typically regulated. In particular, many toxins are produced only when the local cell density is high. It is unclear which selection pressures shaped the evolution of density-dependent regulation of toxin production. Here, we study the evolution of toxin production, resistance and the response to a cell-density cue in a model of an evolving bacterial population with spatial structure. We present results for two growth regimes: (i) an undisturbed, fixed habitat in which only small fluctuations of cell density occur, and (ii) a serial-transfer regime with large fluctuations in cell density. We find that density-dependent toxin production can evolve under both regimes. However, the selection pressures driving the evolution of regulation differ. In the fixed habitat, regulation evolves because it allows cells to produce toxin only when opportunities for reproduction are highly limited (because of a high local cell density), and the effective fitness costs of toxin production are hence low. Under serial transfers, regulation evolves because it allows cells to switch from a fast-growing non-toxic phenotype when colonising a new habitat, to a slower-growing competitive toxic phenotype when the cell density increases. Colonies of such regulating cells rapidly expand into unoccupied space because their edges consist of fast-growing, non-toxin-producing cells, but are also combative because cells at the interfaces with competing colonies do produce toxin. Because under the two growth regimes different types of regulation evolve, our results underscore the importance of growth conditions in the evolution of social behaviour in bacteria.


Assuntos
Antibiose/fisiologia , Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Modelos Biológicos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Evolução Biológica , Biologia Computacional , Simulação por Computador , Ecossistema , Aptidão Genética , Genótipo , Interações Microbianas/fisiologia , Fenótipo
5.
PLoS Comput Biol ; 13(1): e1005228, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103248

RESUMO

The existence of long-lived reservoirs of latently infected CD4+ T cells is the major barrier to curing HIV, and has been extensively studied in this light. However, the effect of these reservoirs on the evolutionary dynamics of the virus has received little attention. Here, we present a within-host quasispecies model that incorporates a long-lived reservoir, which we then nest into an epidemiological model of HIV dynamics. For biologically plausible parameter values, we find that the presence of a latent reservoir can severely delay evolutionary dynamics within a single host, with longer delays associated with larger relative reservoir sizes and/or homeostatic proliferation of cells within the reservoir. These delays can fundamentally change the dynamics of the virus at the epidemiological scale. In particular, the delay in within-host evolutionary dynamics can be sufficient for the virus to evolve intermediate viral loads consistent with maximising transmission, as is observed, and not the very high viral loads that previous models have predicted, an effect that can be further enhanced if viruses similar to those that initiate infection are preferentially transmitted. These results depend strongly on within-host characteristics such as the relative reservoir size, with the evolution of intermediate viral loads observed only when the within-host dynamics are sufficiently delayed. In conclusion, we argue that the latent reservoir has important, and hitherto under-appreciated, roles in both within- and between-host viral evolution.


Assuntos
Evolução Biológica , Infecções por HIV/virologia , HIV-1 , Latência Viral , Linfócitos T CD4-Positivos/virologia , Biologia Computacional , HIV-1/genética , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Modelos Biológicos , Latência Viral/genética , Latência Viral/fisiologia
6.
J Theor Biol ; 375: 4-12, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25446707

RESUMO

The T lymphocytes of the adaptive immune system constitute a highly diverse repertoire of clones expressing a unique T cell receptor (TCR). It has been argued that TCRs are cross-reactive, meaning that one receptor can recognize a multitude of epitopes. Cross-reactivity between self and foreign epitopes can potentially lead to autoimmune responses. Regulatory T cells (Tregs) down-regulate immune reactions, and play an important role in the avoidance of autoimmunity. We use a probabilistic modeling approach to investigate how suppression of antigen-presenting dendritic cells (DCs) by Tregs influences the probability of mounting a successful immune response against a pathogen while remaining self-tolerant. For T cell cross-reactivity values close to experimental estimates, we find that the presence of Tregs increases this success probability somewhat. However, the probability of a successful immune response remains relatively low for these cross-reactivity values, and the probability of success is optimized when T cells are more specific and no Tregs are formed. We conclude that DC suppression on its own is insufficient to provide an evolutionary benefit of regulatory T cells. Rejecting one intuitively likely hypothesis for the function of Tregs thus narrows down the search for the mechanisms by which they are suppressing inappropriate immune responses.


Assuntos
Autoimunidade/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/imunologia , Apoptose , Reações Cruzadas/imunologia , Células Dendríticas/imunologia , Epitopos/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Modelos Biológicos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...