Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546995

RESUMO

Homology Directed Repair (HDR)-based genome editing is an approach that could permanently correct a broad range of genetic diseases. However, its utility is limited by inefficient and imprecise DNA repair mechanisms in terminally differentiated tissues. Here, we tested "Repair Drive", a novel method for improving targeted gene insertion in the liver by selectively expanding correctly repaired hepatocytes in vivo. Our system consists of transient conditioning of the liver by knocking down an essential gene, and delivery of an untargetable version of the essential gene in cis with a therapeutic transgene. We show that Repair Drive dramatically increases the percentage of correctly targeted hepatocytes, up to 25%. This resulted in a five-fold increased expression of a therapeutic transgene. Repair Drive was well-tolerated and did not induce toxicity or tumorigenesis in long term follow up. This approach will broaden the range of liver diseases that can be treated with somatic genome editing.

2.
Atherosclerosis ; 384: 117150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37290980

RESUMO

BACKGROUND AND AIMS: Despite increased clinical interest in lipoprotein(a) (Lp(a)), many questions remain about the molecular mechanisms by which it contributes to atherosclerotic cardiovascular disease. Existing murine transgenic (Tg) Lp(a) models are limited by low plasma levels of Lp(a) and have not consistently shown a pro-atherosclerotic effect of Lp(a). METHODS: We generated Tg mice expressing both human apolipoprotein(a) (apo(a)) and human apoB-100, with pathogenic levels of plasma Lp(a) (range 87-250 mg/dL). Female and male Lp(a) Tg mice (Tg(LPA+/0;APOB+/0)) and human apoB-100-only controls (Tg(APOB+/0)) (n = 10-13/group) were fed a high-fat, high-cholesterol diet for 12 weeks, with Ldlr knocked down using an antisense oligonucleotide. FPLC was used to characterize plasma lipoprotein profiles. Plaque area and necrotic core size were quantified and immunohistochemical assessment of lesions using a variety of cellular and protein markers was performed. RESULTS: Male and female Tg(LPA+/0;APOB+/0) and Tg(APOB+/0) mice exhibited proatherogenic lipoprotein profiles with increased cholesterol-rich VLDL and LDL-sized particles and no difference in plasma total cholesterol between genotypes. Complex lesions developed in the aortic sinus of all mice. Plaque area (+22%), necrotic core size (+25%), and calcified area (+65%) were all significantly increased in female Tg(LPA+/0;APOB+/0) mice compared to female Tg(APOB+/0) mice. Immunohistochemistry of lesions demonstrated that apo(a) deposited in a similar pattern as apoB-100 in Tg(LPA+/0;APOB+/0) mice. Furthermore, female Tg(LPA+/0;APOB+/0) mice exhibited less organized collagen deposition as well as 42% higher staining for oxidized phospholipids (OxPL) compared to female Tg(APOB+/0) mice. Tg(LPA+/0;APOB+/0) mice had dramatically higher levels of plasma OxPL-apo(a) and OxPL-apoB compared to Tg(APOB+/0) mice, and female Tg(LPA+/0;APOB+/0) mice had higher plasma levels of the proinflammatory cytokine MCP-1 (+3.1-fold) compared to female Tg(APOB+/0) mice. CONCLUSIONS: These data suggest a pro-inflammatory phenotype exhibited by female Tg mice expressing Lp(a) that appears to contribute to the development of more severe lesions with greater vulnerable features.


Assuntos
Aterosclerose , Lipoproteína(a) , Masculino , Humanos , Feminino , Camundongos , Animais , Lipoproteína(a)/genética , Apolipoproteína B-100/genética , Camundongos Transgênicos , Aterosclerose/genética , Aterosclerose/metabolismo , Apolipoproteínas B , Apolipoproteínas A , Apoproteína(a) , Colesterol
3.
Mol Ther Methods Clin Dev ; 27: 337-351, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381302

RESUMO

Lipoprotein(a) (Lp(a)) represents a unique subclass of circulating lipoprotein particles and consists of an apolipoprotein(a) (apo(a)) molecule covalently bound to apolipoprotein B-100. The metabolism of Lp(a) particles is distinct from that of low-density lipoprotein (LDL) cholesterol, and currently approved lipid-lowering drugs do not provide substantial reductions in Lp(a), a causal risk factor for cardiovascular disease. Somatic genome editing has the potential to be a one-time therapy for individuals with extremely high Lp(a). We generated an LPA transgenic mouse model expressing apo(a) of physiologically relevant size. Adeno-associated virus (AAV) vector delivery of CRISPR-Cas9 was used to disrupt the LPA transgene in the liver. AAV-CRISPR nearly completely eliminated apo(a) from the circulation within a week. We performed genome-wide off-target assays to determine the specificity of CRISPR-Cas9 editing within the context of the human genome. Interestingly, we identified intrachromosomal rearrangements within the LPA cDNA in the transgenic mice as well as in the LPA gene in HEK293T cells, due to the repetitive sequences within LPA itself and neighboring pseudogenes. This proof-of-concept study establishes the feasibility of using CRISPR-Cas9 to disrupt LPA in vivo, and highlights the importance of examining the diverse consequences of CRISPR cutting within repetitive loci and in the genome globally.

4.
Arterioscler Thromb Vasc Biol ; 42(4): 381-394, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35172604

RESUMO

BACKGROUND: The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS: Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS: Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS: Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.


Assuntos
Intestinos , Células-Tronco , Acil Coenzima A , Animais , Colesterol , Feminino , Masculino , Camundongos , Esteróis
5.
Mol Ther Methods Clin Dev ; 21: 656-669, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34141821

RESUMO

Clinical application of somatic genome editing requires therapeutics that are generalizable to a broad range of patients. Targeted insertion of promoterless transgenes can ensure that edits are permanent and broadly applicable while minimizing risks of off-target integration. In the liver, the Albumin (Alb) locus is currently the only well-characterized site for promoterless transgene insertion. Here, we target the Apoa1 locus with adeno-associated viral (AAV) delivery of CRISPR-Cas9 and achieve rates of 6% to 16% of targeted hepatocytes, with no evidence of toxicity. We further show that the endogenous Apoa1 promoter can drive robust and sustained expression of therapeutic proteins, such as apolipoprotein E (APOE), dramatically reducing plasma lipids in a model of hypercholesterolemia. Finally, we demonstrate that Apoa1-targeted fumarylacetoacetate hydrolase (FAH) can correct and rescue the severe metabolic liver disease hereditary tyrosinemia type I. In summary, we identify and validate Apoa1 as a novel integration site that supports durable transgene expression in the liver for gene therapy applications.

6.
J Lipid Res ; 61(12): 1675-1686, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33109681

RESUMO

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.


Assuntos
Estresse do Retículo Endoplasmático/genética , Hidroximetilglutaril-CoA Redutases/deficiência , Hidroximetilglutaril-CoA Redutases/genética , Fígado/metabolismo , Terpenos/metabolismo , Deleção de Genes
7.
Mol Ther ; 28(6): 1432-1441, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32348718

RESUMO

Adeno-associated viral (AAV) vectors are a leading candidate for the delivery of CRISPR-Cas9 for therapeutic genome editing in vivo. However, AAV-based delivery involves persistent expression of the Cas9 nuclease, a bacterial protein. Recent studies indicate a high prevalence of neutralizing antibodies and T cells specific to the commonly used Cas9 orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans. We tested in a mouse model whether pre-existing immunity to SaCas9 would pose a barrier to liver genome editing with AAV packaging CRISPR-Cas9. Although efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity, this was accompanied by an increased proportion of CD8+ T cells in the liver. This cytotoxic T cell response was characterized by hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells, and was followed by compensatory liver regeneration. Our results raise important efficacy and safety concerns for CRISPR-Cas9-based in vivo genome editing in the liver.


Assuntos
Proteína 9 Associada à CRISPR/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Animais , Biomarcadores , Proteína 9 Associada à CRISPR/efeitos adversos , Expressão Gênica , Ordem dos Genes , Hepatócitos/metabolismo , Humanos , Imunização , Memória Imunológica , Imunofenotipagem , Camundongos , RNA Guia de Cinetoplastídeos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transgenes
8.
Curr Opin Cardiol ; 35(3): 242-248, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32073405

RESUMO

PURPOSE OF REVIEW: This review highlights recent progress in applying genome editing to the study and treatment of cardiovascular disease (CVD). RECENT FINDINGS: Recent work has shown that genome editing can be used to determine the pathogenicity of variants of unknown significance in patient-derived induced pluripotent stem cells. These cells can also be used to test therapeutic genome editing approaches in a personalized manner. Somatic genome editing holds great promise for the treatment of CVD, and important proof of concept experiments have already been performed in animal models. Here we briefly review recent progress in patient-derived cells, as well as the development of somatic genome-editing therapies for CVD, with a particular focus on liver and heart. SUMMARY: Translating this technology into the clinic will require precise editing enzymes, efficient delivery systems, and mitigation of off-target events and immune responses. Further development of these technologies will improve diagnostics and enable permanent correction of some of the most severe forms of CVD.


Assuntos
Doenças Cardiovasculares/terapia , Células-Tronco Pluripotentes Induzidas , Animais , Edição de Genes , Humanos
9.
Mol Ther Methods Clin Dev ; 12: 111-122, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30619914

RESUMO

Adeno-associated viral (AAV) vectors packaging the CRISPR-Cas9 system (AAV-CRISPR) can efficiently modify disease-relevant genes in somatic tissues with high efficiency. AAV vectors are a preferred delivery vehicle for tissue-directed gene therapy because of their ability to achieve sustained expression from largely non-integrating episomal genomes. However, for genome editizng applications, permanent expression of non-human proteins such as the bacterially derived Cas9 nuclease is undesirable. Methods are needed to achieve efficient genome editing in vivo, with controlled transient expression of CRISPR-Cas9. Here, we report a self-deleting AAV-CRISPR system that introduces insertion and deletion mutations into AAV episomes. We demonstrate that this system dramatically reduces the level of Staphylococcus aureus Cas9 protein, often greater than 79%, while achieving high rates of on-target editing in the liver. Off-target mutagenesis was not observed for the self-deleting Cas9 guide RNA at any of the predicted potential off-target sites examined. This system is efficient and versatile, as demonstrated by robust knockdown of liver-expressed proteins in vivo. This self-deleting AAV-CRISPR system is an important proof of concept that will help enable translation of liver-directed genome editing in humans.

10.
Arterioscler Thromb Vasc Biol ; 38(9): 1997-2006, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026278

RESUMO

Objective- Atherosclerosis studies in Ldlr knockout mice require breeding to homozygosity and congenic status on C57BL6/J background, a process that is both time and resource intensive. We aimed to develop a new method for generating atherosclerosis through somatic deletion of Ldlr in livers of adult mice. Approach and Results- Overexpression of PCSK9 (proprotein convertase subtilisin/kexin type 9) is currently used to study atherosclerosis, which promotes degradation of LDLR (low-density lipoprotein receptor) in the liver. We sought to determine whether CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated 9) could also be used to generate atherosclerosis through genetic disruption of Ldlr in adult mice. We engineered adeno-associated viral (AAV) vectors expressing Staphylococcus aureus Cas9 and a guide RNA targeting the Ldlr gene (AAV-CRISPR). Both male and female mice received either (1) saline, (2) AAV-CRISPR, or (3) AAV-hPCSK9 (human PCSK9)-D374Y. A fourth group of germline Ldlr-KO mice was included for comparison. Mice were placed on a Western diet and followed for 20 weeks to assess plasma lipids, PCSK9 protein levels, atherosclerosis, and editing efficiency. Disruption of Ldlr with AAV-CRISPR was robust, resulting in severe hypercholesterolemia and atherosclerotic lesions in the aorta. AAV-hPCSK9 also produced hypercholesterolemia and atherosclerosis as expected. Notable sexual dimorphism was observed, wherein AAV-CRISPR was superior for Ldlr removal in male mice, while AAV-hPCSK9 was more effective in female mice. Conclusions- This all-in-one AAV-CRISPR vector targeting Ldlr is an effective and versatile tool to model atherosclerosis with a single injection and provides a useful alternative to the use of germline Ldlr-KO mice.


Assuntos
Aterosclerose/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Vetores Genéticos , Receptores de LDL/genética , Adenoviridae , Animais , Aterosclerose/sangue , Proteína 9 Associada à CRISPR/genética , Feminino , Edição de Genes , Expressão Gênica , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/genética , Receptores de LDL/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...