Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(11): 101253, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918405

RESUMO

Colonization of the gut and airways by pathogenic bacteria can lead to local tissue destruction and life-threatening systemic infections, especially in immunologically compromised individuals. Here, we describe an mRNA-based platform enabling delivery of pathogen-specific immunoglobulin A (IgA) monoclonal antibodies into mucosal secretions. The platform consists of synthetic mRNA encoding IgA heavy, light, and joining (J) chains, packaged in lipid nanoparticles (LNPs) that express glycosylated, dimeric IgA with functional activity in vitro and in vivo. Importantly, mRNA-derived IgA had a significantly greater serum half-life and a more native glycosylation profile in mice than did a recombinantly produced IgA. Expression of an mRNA encoded Salmonella-specific IgA in mice resulted in intestinal localization and limited Peyer's patch invasion. The same mRNA-LNP technology was used to express a Pseudomonas-specific IgA that protected from a lung challenge. Leveraging the mRNA antibody technology as a means to intercept bacterial pathogens at mucosal surfaces opens up avenues for prophylactic and therapeutic interventions.


Assuntos
Mucosa , Nódulos Linfáticos Agregados , Camundongos , Animais , Imunoglobulina A , Anticorpos Monoclonais
2.
ACS Infect Dis ; 7(5): 1221-1235, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33728898

RESUMO

As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.


Assuntos
Imunoglobulina A Secretora , Salmonella typhimurium , Aglutinação , Humanos , Imunidade nas Mucosas , Imunoglobulina A , Recém-Nascido , Mucosa Intestinal , Tecido Linfoide
3.
PLoS Negl Trop Dis ; 14(3): e0007803, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203503

RESUMO

Non-typhoidal Salmonella enterica strains, including serovar Typhimurium (STm), are an emerging cause of invasive disease among children and the immunocompromised, especially in regions of sub-Saharan Africa. STm invades the intestinal mucosa through Peyer's patch tissues before disseminating systemically. While vaccine development efforts are ongoing, the emergence of multidrug resistant strains of STm affirms the need to seek alternative strategies to protect high-risk individuals from infection. In this report, we investigated the potential of an orally administered O5 serotype-specific IgA monoclonal antibody (mAb), called Sal4, to prevent infection of invasive Salmonella enterica serovar Typhimurium (STm) in mice. Sal4 IgA was delivered to mice prior to or concurrently with STm challenge. Infectivity was measured as bacterial burden in Peyer's patch tissues one day after challenge. Using this model, we defined the minimal amount of Sal4 IgA required to significantly reduce STm uptake into Peyer's patches. The relative efficacy of Sal4 in dimeric and secretory IgA (SIgA) forms was compared. To assess the role of isotype in oral passive immunization, we engineered a recombinant IgG1 mAb carrying the Sal4 variable regions and evaluated its ability to block invasion of STm into epithelial cells in vitro and Peyer's patch tissues. Our results demonstrate the potential of orally administered monoclonal IgA and SIgA, but not IgG, to passively immunize against invasive Salmonella. Nonetheless, the prophylactic window of IgA/SIgA in the mouse was on the order of minutes, underscoring the need to develop formulations to protect mAbs in the gastric environment and to permit sustained release in the small intestine.


Assuntos
Anticorpos Monoclonais/farmacologia , Imunoglobulina A/farmacologia , Imunoglobulina G/farmacologia , Salmonella/efeitos dos fármacos , Administração Oral , África , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Hibridomas , Imunização Passiva , Imunoglobulina A Secretora , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados , Salmonella typhimurium/efeitos dos fármacos
4.
J Comp Neurol ; 511(2): 238-56, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18785627

RESUMO

Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encefalopatias , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encéfalo/anormalidades , Encéfalo/anatomia & histologia , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Proteínas de Transporte , Humanos , Hibridização In Situ , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/genética , Síndrome , Distribuição Tecidual , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...